

How ubiquitous are the reproduction numbers for epidemics processes?

Suani Pinho

Physics Institute – Federal University of Bahia (UFBA) National Institute of Science and Technology - Complex Systems

STATISTICAL MECHANICS FOR COMPLEXITY A CELEBRATION OF THE 80TH BIRTHDAY OF CONSTANTINO TSALLIS

RIO DE JANEIRO, 6 TO 10 NOVEMBER 2023

Café Científico traz Constantino Tsallis a Salvador

🖀 8 de novembro de 2013 🏾 🗩 0 Comentário

café científico.ufba

O Café Científico da UFBA traz a Salvador, na próxima sexta-feira, 08 de novembro, o palestrante Constantino Tsallis, pesquisador titular do Centro Brasileiro de Pesquisas Físicas (CBPF), membro da Academia Brasileira de Ciências e líder do Instituto Nacional de Ciência e Tecnologia de Sistemas Complexos. No evento, que será realizado na SaladeArte-Cinema da UFBA, no Canela às 10h, Tsallis abordará o tema "Complexidade em Ciência e Tecnologia". O evento é realizado pela Pró-Reitoria de Extensão Universitária (PROEXT).

VIII Latin American Workshop on Nonlinear Phenomena (LAWNP'03) - September 28 to October 3rd 2003 – Salvador – Brazil)

Trends and perspectives in extensive and non-extensive statistical mechanics

ScienceDirect

Physica A: Statistical Mechanics and its Applications

Volume 344, Issues 3-4, 15 December 2004, Pages v-vi

Preface

Hans Herrmann 🖾, Marcia Barbosa 🖾, Evaldo Curado 🖂

Proceedings of the International Workshop on "Trends and perspectives in extensive and nonextensive statistical mechanics", Angra dos Reis, Brazil, 19-21 November 2003 - In honour of the 60th birthday of Constantino Tsallis

Available online at www.sciencedirect.com SCIENCE () DIRECT.

Physica A 344 (2004) 601-607

www.elsevier.com/locate/physa

Power law sensitivity to initial conditions for abelian directed self-organized critical models

S.T.R. Pinho*, R.F.S. Andrade

Instituto de Física, Universidade Federal da Bahia, 40.130-240 Salvador, Brazil

Available online 6 July 2004

http://dx.doi.org/10.1063/1.2982233

JOURNAL OF MATHEMATICAL PHYSICS 49, 093509 (2008)

Nondistributive algebraic structures derived from nonextensive statistical mechanics

Pedro G. S. Cardoso,^{1,a)} Ernesto P. Borges,^{2,b)} Thierry C. P. Lobão,^{3,c)} and Suani T. R. Pinho^{1,d)} ¹Instituto de Física, Universidade Federal da Bahia, Campus Universitário de Ondina, 40210-340 Salvador, Bahia, Brazil ²Escola Politécnica, Universidade Federal da Bahia, Rua Prof. Aristides Novis 2, 40210-630 Salvador, Bahia, Brazil ³Instituto de Matemática, Universidade Federal da Bahia, Campus Universitário de Ondina, 40170-110 Salvador, Bahia, Brazil

(Received 11 June 2008; accepted 21 August 2008; published online 24 September 2008)

Brazilian Journal of Physics, vol. 39, no. 2A, August, 2009

402

Thierry C. Petit Lobão et al.

Some properties of deformed *q*-numbers

Thierry C. Petit Lobão Instituto de Matemática, Universidade Federal da Bahia Campus Universitário de Ondina, 40170-110 Salvador–BA, Brazil*

Pedro G. S. Cardoso and Suani T. R. Pinho Instituto de Física, Universidade Federal da Bahia Campus Universitário de Ondina, 40210-340 Salvador-BA, Brazil

Ernesto P. Borges Escola Politécnica, Universidade Federal da Bahia Rua Prof. Aristides Novis 2, 40210-630 Salvador–BA, Brazil (Received on 19 January, 2009)

"LIKE BEAUTY, COMPLEXITY IS HARD TO DEFINE AND EASY TO IDENTIFY"

"LIKE BEAUTY, COMPLEXITY CAN BE SIMPLE AND UNCERTAIN"

Constantino Tsallis

Vienna, May 2018

Outline

- Motivation
 - Complex behavior of the transmission dynamics of communicable diseases
- Preliminary
 - The basic (\mathscr{R}_0) and time-dependent effective ($\mathscr{R}(t)$) reproduction numbers
- The method
 - Generalization of the next-generation method procedure (previously proposed for estimating \mathscr{R}_0)
- Applications
 - Complex scenarios: co-circulation of viruses, transmission of disease between cities, vaccine effect
- Concluding remarks

A bit of history

- The concept of basic reproduction number (\$\mathcal{B}_0\$) was introduced by MacDonald in the 1950s,
- In 1990, Diekmann and collaborators proposed the next generation method, setting up a clear mathematical definition of \mathscr{R}_0 for heterogeneous populations, detailed in 2000.
- In 2002, van der Driessche & Watmough presented a detailed procedure to estimate \mathscr{R}_0 for compartmental models.
- In 2004, Fred Brauer highlighted the essential concept of infection age for generalizing reproduction number for any time *t*.
- In 2006, Wallinga and Lipsitch emphasized the role of the generation interval distribution $g(\tau)$ for the effective reproduction number $\Re(t)$.

•

- In 2009, Nishiura and Chowell presented mathematical and statistical properties of *A(t)* as well as some applications.
- We present a generalization of the procedure based on the next generation method with the aim of obtaining $g(\tau)$ and $\Re(t)$ for heterogeneous models based on incidence data.
- We also apply it to complex models such as stochastical and metapopulation ones to investigate different contexts.

Odo Dieckmann (1948-)

Pauline van den Driessche (1941-)

Our work about the method

(Jorge et al., R. Soc. Open Sci. 9 (2022) 220005)

ROYAL SOCIETY OPEN SCIENCE

royalsocietypublishing.org/journal/rsos

Research

Cite this article: Jorge DCP, Oliveira JF, Miranda JGV, Andrade RFS, Pinho STR. 2022 Estimating the effective reproduction number for heterogeneous models using incidence data. *R. Soc. Open Sci.* **9**: 220005. https://doi.org/10.1098/rsos.220005

Estimating the effective reproduction number for heterogeneous models using incidence data

D. C. P. Jorge^{1,3}, J. F. Oliveira², J. G. V. Miranda³, R. F. S. Andrade^{2,3} and S. T. R. Pinho³

¹Instituto de Física Teórica, Universidade Estadual Paulista—UNESP, R. Dr. Teobaldo Ferraz 271, São Paulo 01140-070, Brazil

²Center of Data and Knowledge Integration for Health (CIDACS), Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil

³Instituto de Física, Universidade Federal da Bahia, Salvador, Bahia, Brazil

Daniel Jorge (Princeton University)

Preliminary

- Concepts of reproduction numbers
 - Basic reproduction number (*M*) the number of new cases of an infection caused by an infected individual in a whole susceptible population.
 - Effective reproduction number (*S*(t)) time series of reproduction number for which the infection reaches a partial susceptible population which changes on time.
- Next-generation method
 - Consider the infection process in terms of consecutive generations of infected individuals analogously to demographic generations ("epidemiological birth"); regarding the generations: ϕ^{m+1} =K ϕ^m
 - The basic reproduction number may be written in terms of spectrum radius of the matrix **K** looking at multiplications in *m* generations but on per generation when $m \rightarrow \infty$:

$$\mathscr{R}_0 = \rho(K) = \lim_{m \to \infty} |K^m|^{1/m}$$

Basic Reproduction Number (*R*)

 Using method of next generation operator, based on the infective compartments (Diekmann e Heesterbeek, 2000; Van den Driessche & Watmough, 2002), for a general model:

$$\frac{dX_i}{dt} = \mathscr{F}_i(x) - \mathscr{V}_i(x), \quad i = 1, \dots, n,$$

 \mathscr{R}_0 is estimated in terms of the sub-model of infective compartments:

$$\mathcal{R}_0 = \lambda \implies \det(F V^{-1} - \lambda I) = 0$$

with
$$F = \left[\frac{\partial \mathscr{F}_i}{\partial x_j}(x_0)\right]$$
 and $V = \left[\frac{\partial \mathscr{V}_i}{\partial x_j}(x_0)\right]$

F corresponds to a matrix whose elements are the rate at which infective individuals in j produce new infections in i, *V* is a matrix composed by the transition terms of compartments i and j. The eigenvalues are obtained for the free-disease equilibrium and *R*₀ corresponds to the largest eigenvalue of *FV*¹.

An stochastic vector-borne model of co-circulation of viruses

Parameters of the model

Parameters	Description
$\lambda_{1(2)}$	Rate of human infection by virus 1(2)
$\gamma_{1(2)}$	Rate of human recovery of disease by virus 1(2)
$\sigma_{21(12)}$	Cross-infection parameter from virus 1(2) to virus 2(1)
$\delta_{1(2)}$	Rate of vector infection by virus 1(2)
μ	Human mortality
μ_v	Vector mortality

Vector-borne diseases

- Zika and dengue Hirata et al, 2023
- DENV-1, 2, 3, 4 de Araújo et al. 2023

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \langle s \rangle &= \mu (1 - \langle s \rangle) - \lambda_1 \langle s v_1 \rangle - \lambda_2 \langle s v_2 \rangle, \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle p_{1(2)} \rangle &= \lambda_{1(2)} \langle s v_{1(2)} \rangle - (\mu + \gamma_{1(2)}) \langle p_{1(2)} \rangle, \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle z_{1(2)} \rangle &= \gamma_{1(2)} \langle p_{1(2)} \rangle - \sigma_{21(12)} \lambda_{2(1)} \langle z_{1(2)} v_{2(1)} \rangle - \mu \langle z_{1(2)} \rangle, \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle y_{2(1)} \rangle &= \sigma_{21(12)} \lambda_{2(1)} \langle z_{1(2)} v_{2(1)} \rangle - (\mu + \gamma_{2(1)}) \langle y_{2(1)} \rangle, \\ \frac{\mathrm{d}}{\mathrm{d}t} \langle v_{1(2)} \rangle &= \delta_{1(2)} [\langle (1 - v_1 - v_2) p_{1(2)} \rangle + \langle (1 - v_1 - v_2) y_{1(2)} \rangle] - \mu_v \langle v_{1(2)} \rangle. \end{aligned}$$

Basic reproduction number for co-circulation model

For stochastic version of the model:

$$\mathcal{R}_{0} = max(\mathcal{R}_{1}, \mathcal{R}_{2}),$$
with

$$\mathcal{R}_{1} = \sqrt{\frac{\lambda_{1}\delta_{1}}{\mu_{v}(\mu + \gamma_{1})}} [\langle s|v_{1}\rangle\langle v_{s}|p_{1}\rangle + \sigma_{12}\langle z_{2}|v_{1}\rangle\langle v_{s}|y_{1}\rangle]}$$

$$\mathcal{R}_{2} = \sqrt{\frac{\lambda_{2}\delta_{2}}{\mu_{v}(\mu + \gamma_{2})}} [\langle s|v_{2}\rangle\langle v_{s}|p_{2}\rangle + \sigma_{21}\langle z_{1}|v_{2}\rangle\langle v_{s}|y_{2}\rangle]}$$

$$\mathcal{R}_{1(2)}^{2} = \frac{1}{\mu_{v}(\mu + \gamma_{1(2)})} \frac{(\Lambda_{1(2)} + \mu_{v})}{(1 - V_{1(2)o} - V_{1(2)o})} \frac{(\Lambda_{1(2)} + \mu + \gamma_{1(2)})}{[1 - Z_{1(2)o} - Z_{o} - Z_{2(1)o}(1 - \sigma_{12(21)})]}$$
• Assuming

$$\langle w_{a}w_{b}\rangle = \langle w_{a}|w_{b}\rangle\langle w_{b}\rangle$$
we recover its deterministic
version (Esteva et al. 2003).
• Since

$$P_{1(2)} = P_{1(2)o}e^{\Lambda_{1(2)}t}$$

$$Y_{1(2)} = Y_{1(2)o}e^{\Lambda_{1(2)}t}$$

$$V_{1(2)} = V_{1(2)o}e^{\Lambda_{1(2)}t}.$$

If there is no imune humans at t=0, then

$$\mathcal{R}_{1(2)}^{2} = \frac{(\Lambda_{1(2)} + \mu_{v})(\Lambda_{1(2)} + \mu + \gamma_{1(2)})}{V_{so}S_{o}\mu_{v}(\mu + \gamma_{1(2)})}.$$
13

Effective reproduction number (\mathcal{R} **(t))**

- The effective reproduction number, $\mathcal{R}(t)$, may be set up through the concept of *infection-age* (Nishiura & Chowell, 2009), also based on the infective compartments.
- Let $A(t,\tau)$ be the rate of new infections at time *t* caused by an infective human at time $\tau \le t$; therefore the number of new infections $\mathcal{F}(t)$ and the reproduction number $\mathcal{R}(t)$ are given by:

$$\mathcal{F}(t) = \int_0^\infty A(t,\tau) \mathcal{F}(t-\tau) d\tau,$$

$$\mathcal{R}(t) \equiv \int_0^\infty A(t,\tau) d\tau.$$

• Consider $g(t,\tau)$ a normalized probability distribution of time interval that an infectious human take to infect secondary cases (generation interval distribution); assuming that g depends only on τ , then:

$$A(t,\tau) = \mathcal{R}(t)g(\tau).$$
 and

$$\mathcal{R}(t) = \frac{\mathcal{F}(t)}{\int_0^\infty g(\tau) \mathcal{F}(t-\tau) d\tau}.$$

SEIIHURD model: COVID-19 dynamics

Pablo I.P. Ramos^c, Juliane F. Oliveira^{c,h,*}

Matheus F. Torquato ⁵, Nivea B. da Silva⁶, Rosemeire L. Fiaccone⁶, Luciana L. Cardim¹, Felipe A. C. Pereira ⁷, Caio P. de Castro³, Aureliano S. S. Paiva ¹, Alan A. S. Amad ⁵, Ernesto A. B. F. Lima⁸, Diego S. Souza ¹, Suani T. R. Pinho^{3,9}, Pablo Ivan P. Ramos ^{1,9} & Roberto F. S. Andrade ^{1,3,9}

A general method for estimation of $\mathscr{R}(t)$ to heterogeneous populations

Density of infective compartments: $\mathbf{x}(t, \tau) = (\mathbf{x}_1(t, \tau), \dots, \mathbf{x}_n(t, \tau))$ such that $\mathbf{X}(t) = \int_0^\infty \mathbf{x}(t, \tau) \, \mathrm{d}\tau$,

$$\left(\frac{\partial}{\partial t} + \frac{\partial}{\partial \tau}\right) \mathbf{x}(t, \tau) = -\mathbf{\mathcal{V}}(t, \tau)$$
$$\mathbf{x}(t, \tau = 0) = \mathbf{\mathcal{F}}(t).$$

lf

$$rac{\mathrm{d}}{\mathrm{d}t} oldsymbol{X}(t) = oldsymbol{\mathcal{F}}(t) - \int_0^\infty oldsymbol{\mathcal{V}}(t,\, au)\,\mathrm{d} au.$$

Thus, obtaining the Next-generation Matrix and the Generation Interval Distribution Matrix:

$$\mathcal{R}_{ij}(t) = \int_0^\infty A_{ij}(t,\tau) d\tau$$
$$A_{ij}(t,\tau)$$

$$g_{ij}(t,\tau) = \frac{A_{ij}(t,\tau)}{\int_0^\infty A_{ij}(t,\tau)d\tau}$$

That leads to the renewal equation:

 $A(t,\tau) = \Omega(t) \Gamma(\tau) \qquad \qquad \mathcal{F}_i(t) = \sum_j \mathcal{R}_{ij}(t) \int_0^\infty g_{ij}(t,\tau) \mathcal{F}_j(t-\tau) d\tau$ $\mathcal{F}_i(t) = \alpha_i(t) \mathcal{F}^T(t) \text{. where } \mathcal{F}^T(t) = \sum_i^n \mathcal{F}_i(t) \quad \text{, then } \mathcal{R}^T(t) = \alpha \cdot \overline{\mathcal{R}} ; \quad \overline{\mathcal{R}}_j(t) = \sum_i^n \mathcal{R}_{ij}(t).$

Steps of the method

- To calculate $\Omega(t, \tau)$: $\Omega_{ij}(t) = \frac{\partial}{\partial X_j} \mathcal{F}_i(t)$.
- To calculate $\Gamma(t, \tau)$:
 - If $\mathcal{V}(t,\tau)$ depends linearly on $x(t,\tau)$, $\frac{d}{d\omega}u(\omega) = -\frac{\partial \mathcal{V}}{\partial x}u(\omega)$. with $u_i(\omega) = x_i(t_0 + \omega, \tau_0 + \omega)$
 - To obtain the eigenvalues λ and the eigenvectores \vec{v} of $-\frac{\partial v}{\partial x}$.
 - To exhibit $u(\omega) = \overline{\Gamma}(\omega) u(0)$, with $\overline{\Gamma}(\omega) = \Gamma(t, \tau)$,
- To obtain $A(t, \tau) = \Omega(t, \tau)\Gamma(t, \tau)$. such that $\mathcal{J}_{ij}(t) = \int_0^\infty A_{ij}(t, \tau)\mathcal{F}_j(t-\tau) \,\mathrm{d}\tau$,
- As a consequence: $\mathcal{R}_{ij}(t) = \int_{0}^{\infty} A_{ij}(t, \tau) d\tau$; $\overline{\mathcal{R}}_{j}(t) = \sum_{i}^{n} \mathcal{R}_{ij}(t)$. $g_{ij}(t, \tau) = \frac{A_{ij}(t, \tau)}{\int_{0}^{\infty} A_{ij}(t, \tau) d\tau}$; $\overline{g}_{j}(t, \tau) := \frac{\sum_{i}^{n} \mathcal{R}_{ij}(t)g_{ij}(t, \tau)}{\sum_{i}^{n} \mathcal{R}_{ij}(t)}$ $\overline{\mathcal{J}}_{j}(t) = \overline{\mathcal{R}}_{j}(t) \int_{0}^{\infty} \overline{g}_{j}(t, \tau) \mathcal{F}_{j}(t-\tau) d\tau$, with $\overline{\mathcal{J}}_{j}(t) = \sum_{i}^{n} \mathcal{J}_{ij}(t)$ • If $\mathcal{F}_{i}(t) = \alpha_{i}(t)\mathcal{F}^{T}(t)$. with $\mathcal{F}^{T}(t) = \sum_{i}^{n} \mathcal{F}_{i}(t)$ then $\mathcal{R}^{T}(t) = \alpha \cdot \overline{\mathcal{R}}$; $g^{T}(t, \tau) = \frac{\sum_{i} \alpha_{i}(t)\overline{\mathcal{R}}_{i}(t) \overline{g}_{i}(\tau)}{\sum_{i} \alpha_{i}(t)\overline{\mathcal{R}}_{i}(t)}$.

An example for sequential progression: SEIR model

$$\frac{dS}{dt} = -\frac{\beta S}{N} \begin{bmatrix} I + \epsilon E \end{bmatrix}, \\
\frac{dE}{dt} = \frac{\beta S}{N} \begin{bmatrix} I + \epsilon E \end{bmatrix} - \kappa E, \\
\frac{dI}{dt} = \kappa E - \gamma I, \\
\frac{dR}{dt} = \gamma I.$$

$$\mathcal{F}(t) = \begin{pmatrix} \frac{\beta S}{N} \begin{bmatrix} I + \epsilon E \end{bmatrix} \\
0 \end{pmatrix}, \quad \longrightarrow \quad \mathbf{\Omega}(t) = \begin{pmatrix} \epsilon \frac{\beta S}{N} & \frac{\beta S}{N} \\
0 & 0 \end{pmatrix}.$$

$$\mathcal{V}(t,\tau) = \begin{pmatrix} \kappa i_e(t,\tau) \\ \gamma i_i(t,\tau) - \kappa i_e(t,\tau) \end{pmatrix} \quad \mathbf{\Gamma}(\tau) = \begin{bmatrix} e^{-\kappa\tau} & 0 \\ \frac{\kappa}{\gamma-\kappa} [e^{-\kappa\tau} - e^{-\gamma\tau}] & e^{-\gamma\tau} \end{bmatrix}.$$

$$(\epsilon - 1)$$

$$\boldsymbol{A}(t,\tau) = \begin{bmatrix} \epsilon \frac{\beta S}{N} & \frac{\beta S}{N} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} e^{-\kappa\tau} & 0 \\ \frac{\kappa}{\gamma-\kappa} [e^{-\kappa\tau} - e^{-\gamma\tau}] & e^{-\gamma\tau} \end{bmatrix} \cdot \longrightarrow \boldsymbol{\mathcal{R}}(t) = \beta \frac{S}{N} \begin{pmatrix} \frac{\epsilon}{\kappa} + \frac{1}{\gamma} & \frac{1}{\gamma} \\ 0 & 0 \end{pmatrix} \cdot \longrightarrow \boldsymbol{\overline{\mathcal{R}}} = \beta \frac{S}{N} \begin{pmatrix} \frac{\epsilon}{\kappa} + \frac{1}{\gamma} \\ \frac{1}{\gamma} \end{pmatrix}$$

Since
$$\mathcal{F}_{1}(t) = \mathcal{F}^{T}(t)$$
 then $\alpha = (1,0)$
 $g_{11}(\tau) = \overline{g}_{1}(\tau) = \frac{\epsilon e^{-\kappa\tau} + \frac{\kappa}{\gamma-\kappa}[e^{-\kappa\tau} - e^{-\gamma\tau}]}{\epsilon/\kappa + 1/\gamma}$
 $g_{12}(\tau) = \overline{g}_{2}(\tau) = \gamma e^{-\gamma\tau}$; $g_{21}(\tau) = g_{22}(\tau) = 0$
 $\mathcal{R}^{T}(t) = \alpha \cdot \overline{\mathcal{R}} = \frac{\beta S}{N} \left[\frac{\epsilon}{\kappa} + \frac{1}{\gamma} \right],$
 $g^{T}(\tau) = \frac{\epsilon e^{-\kappa\tau} + \frac{\kappa}{\gamma-\kappa}[e^{-\kappa\tau} - e^{-\gamma\tau}]}{\epsilon/\kappa + 1/\gamma}$

SEIIHURD model (SEIIR model with $\epsilon = 0$)

$$\mathcal{R}(t) = \beta \frac{S}{N} \begin{pmatrix} \frac{p}{\gamma_s} + \delta \frac{(1-p)}{\gamma_a} & 1/\gamma_s & 1/\gamma_a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\mathcal{F}^T(t) = \mathcal{R}^T(t) \int_0^\infty g^T(t,\tau) \mathcal{F}^T(t-\tau) d\tau$$

$$\begin{split} \frac{dS}{dt} &= -\frac{\beta S}{N} \big(I_s + \delta I_a \big), \\ \frac{dE}{dt} &= \frac{\beta S}{N} \big(I_s + \delta I_a \big) - \kappa E, \\ \frac{dI_s}{dt} &= p \kappa E - \gamma_s I_s, \\ \frac{dI_a}{dt} &= (1-p) \kappa E - \gamma_a I_a, \\ \frac{dR}{dt} &= \gamma_a I_a + \gamma_s I_s. \end{split}$$
 Whereby $\mathcal{F}^T(t) = \sum \mathcal{F}_i(t)$. For the model, we get:

$$\mathcal{R}^T(t) = \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \Big(\frac{p}{\gamma_s} + \frac{\delta_a(1-p)}{\gamma_a} \Big) \\ \mathcal{R}^T(t) &= \beta$$

Based on real data: $\mathcal{R}^{T}(t) = \frac{\mathcal{B}^{T}(t)}{\sum_{\tau=0}^{t} g^{T}(t, \tau) \mathcal{B}^{T}(t-\tau) \Delta t}, \qquad g_{s}(\tau) = \frac{\kappa \gamma_{s}}{\kappa - \gamma_{s}} (e^{-\gamma_{s}\tau} - e^{-\kappa\tau}).$

Application of the method for metapopulation model of COVID-19 epidemics

We chose 11 cities of the metropolitan region of Rio de Janeiro (Brazil) that present the highest number of cases of COVID-19 until september 2020.

Pendular flow of individuals commuting to work is relevant for COVID-19 tranmission dynamics but it is not the only factor.

Constructing a metapopulation transmission model

The disease transmission

22

SIR metapopulation model

$$\begin{aligned} \frac{dS_i}{dt} &= -\sum_j^n \lambda_{ij}(t) \ I_j(t) \ S_i(t), \\ \frac{dI_i}{dt} &= \sum_j^n \lambda_{ij}(t) \ I_j(t) \ S_i(t) - \gamma \ I_i(t), \\ \frac{dR_i}{dt} &= \gamma I_i(t). \end{aligned}$$

$$\begin{split} \lambda_{ii} &= \frac{\beta_i}{N_i} \left(1 - \sum_j^n \Phi_{ij} \right)^2 + \sum_j^n \frac{\beta_j}{N_j} \Phi_{ij}^2 \\ \lambda_{ij} &= \frac{\beta_i}{N_i} \Phi_{ji} \left(1 - \sum_k^n \Phi_{ik} \right) + \frac{\beta_j}{N_j} \Phi_{ij} \left(1 - \sum_k^n \Phi_{jk} \right) + \sum_k^n \frac{\beta_k}{N_k} \Phi_{ik} \Phi_{jk} \end{split}$$

Applying the generalized method to SIR metapopulation model

$$\frac{dS_i}{dt} = -\sum_{j}^{n} \lambda_{ij}(t) I_j(t) S_i(t),$$

$$\frac{dI_i}{dt} = \sum_{j}^{n} \lambda_{ij}(t) I_j(t) S_i(t) - \gamma I_i(t),$$

$$\frac{dR_i}{dt} = \gamma I_i(t).$$

$$\boldsymbol{\mathcal{F}}(t) = \left[\sum_{j}^{n} \lambda_{ij}(t) I_j(t) S_i(t)\right],$$

$$\boldsymbol{\mathcal{V}}(t,\tau) = \left[-\gamma \, i_i(t,\tau)
ight]$$

24

Effective reproduction number matrix for SIR metapopulation model

$$\boldsymbol{A}(t,\tau) = \left[\lambda_{ij}S_i \ e^{-\gamma\tau}\right]$$

$$\boldsymbol{\mathcal{R}}(t) = \left[\frac{\lambda_{ij}S_i}{\gamma}\right].$$

$$g_{ij}(\tau) = g(\tau) = \gamma e^{-\gamma \tau}.$$

Number of exported cases

4

This Reproduction number matrix **cannot** be summed up into a **total reproduction number:** the dynamics of such system cannot be globally determined by a single reproduction number, but by several of them.

$$\mathcal{T}_{ij}(t) = \mathcal{R}_{ij}(t) \sum_{\tau=0}^{t} g_{ij}(t, \tau) \mathcal{B}_{j}(t-\tau) \Delta t, \qquad \mathcal{B}_{i}(t) = \sum_{j \neq l}^{n} \mathcal{T}_{ij}.$$

26

Results for SIR and SEIIR metapopulation models

Influence on number of infections caused by a count i on a count j

Influence of number of infections caused by a count on another one (SEIIR)

Municipality	Acronyms
Belford Roxo	BR.
Duque de Caxias	DdC
Magé	${ m Ma}$
Mesquita	Mq
Nilópolis	\mathbf{Ns}
Niterói	Nt
Nova Iguaçu	NI
Queimados	Q
Rio de Janeiro	RJ
São Gonçalo	\mathbf{SG}
São João de Meriti	SJdM

The thickness of the lines is proportional to the number of cases that one count generates on the other one

Ongoing work and concluding remarks

- We are able to generalize the used procedure of estimating the basic reproduction number to the effective reproduction number, also obtaining the generation interval distribution for an arbitrary model using data.
- Since the methodology is very general, we ara applying it to several models of disease transmission:
 - SEIIUHRD model with vaccine against COVID-19 (leaky x all or nothing)
 - Dengue model with vaccine (dengvaxia x qdenga)
 - Dengue model with entomological parameters of aquatic phase of vectors varying with temperature
 - Alert-early system of outbreaks of na unknown transmitted disease
- This method allows us to estimate other key quantities of an epidemic process, such as the number of cases that a count generates on neighbor ones through metapopulation models.
- New features of reproduction numbers as well as derived measures of them were considered when we analyse more complex scenarios.

- Daniel Jorge (Princeton University-USA)
- Robert de Araújo (IF-UFBA)
- Filipe Cruz (IF-UFBA)
- Arícia Perée (IF-UFBA)
- Caio Rauh (IF-UFBA)
- Eduardo Araújo (UFPR)
- Derick Fernandes (IF-UFBA)
- Flavia Hirata (UL solutions after INCT-SC posdoc)
- Felipe Pereira (CIDACS-FIOCRUZ)
- Rejane Dorn (Universidade do Grande Rio)
- Claudia Ferreira (UNESP Botucatu)
- Lourdes Esteva (UNAM Mexico)
- Gustavo Cruz-Pacheco (UNAM Mexico)
- Roberto Andrade(UFBA/CIDACS-Fiocruz-BA)
- Luciana Cardim (CIDACS-Fiocruz-BA)
- Lacita Skalinski (UESC)
- Gloria Teixeira (UFBA/CIDACS-Fiocruz-BA)
- Claudia Codeço (Fiocruz RJ)

The team

References

P. Van den Driessche, J. Watmough, *Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission*. Mathl Biosc. **180**, 29–48 (2002).

S.T.R. Pinho, C.P. Ferreira, L. Esteva, F.R. Barreto, and V.C. Morato-e-Silva, M.G. Teixeira, *Modelling the dynamics of dengue real epidemics*, Phil. Trans. R. Soc. A **368**, 5679 (2010).

R.G.S. de Araújo, D.C.P. Jorge, R.C. Dorn, G. Cruz-Pacheco, M.L.M. Esteva, and S.T.R. Pinho, *Applying a multi-strain dengue model to epidemics data*, Math. Biosc. **360**, 109013 (2023).

F.M.R. Hirata, D.C.P. Jorge, F.A.C. Pereira, L.M. Skalinski, G. Cruz-Pacheco, M.L.M. Esteva, and S.T.R. Pinho, *Cocirculation of Dengue and Zika viruses: A modelling approach applied to epidemics data*, Chaos Solit. Fractals **173**, 113599 (2023).

Thank you for your attention!

Happy Birthday, Constantino! χρόνια πολλά!

 $\mathbf{\Omega}(t)$

An example for sequential progression: SEIR model

SEIIHURD model (SEIIR model with $\epsilon = 0$)

$$\mathcal{R}(t) = \beta \frac{S}{N} \begin{pmatrix} \frac{p}{\gamma_s} + \delta \frac{(1-p)}{\gamma_a} & 1/\gamma_s & 1/\gamma_a \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\mathcal{F}^T(t) = \mathcal{R}^T(t) \int_0^\infty g^T(t,\tau) \mathcal{F}^T(t-\tau) d\tau$$

$$\begin{split} \frac{dS}{dt} &= -\frac{\beta S}{N} (I_s + \delta I_a), \\ \frac{dE}{dt} &= \frac{\beta S}{N} (I_s + \delta I_a) - \kappa E, \\ \frac{dI_s}{dt} &= p \kappa E - \gamma_s I_s, \\ \frac{dI_a}{dt} &= (1 - p) \kappa E - \gamma_a I_a, \\ \frac{dR}{dt} &= \gamma_a I_a + \gamma_s I_s. \end{split}$$
 Whereby $\mathcal{F}^T(t) = \sum \mathcal{F}_i(t)$. For the model, we get:
 $\mathcal{R}^T(t) = \beta \frac{S(t)}{N} \left(\frac{p}{\gamma_s} + \frac{\delta_a(1 - p)}{\gamma_a}\right)$

$$\begin{aligned} \mathcal{R}^T(t) &= \beta \frac{S(t)}{N} \left(\frac{p}{\gamma_s} + \frac{\delta_a(1 - p)}{\gamma_a}\right) \\ g_{ij}(\tau) &\equiv g(\tau) = \frac{\frac{p}{\gamma_s} g^s(\tau) + \frac{\delta(1 - p)}{\gamma_a} g^a(\tau)}{\frac{p}{\gamma_s} + \frac{\delta(1 - p)}{\gamma_a}}, \\ g_{ai}(\tau) &= -\frac{\kappa \gamma_a}{\kappa} (e^{-\gamma_a \tau} - e^{-\kappa \tau}), \end{split}$$

Based on real data: $\mathcal{R}^{T}(t) = \frac{\mathcal{B}^{T}(t)}{\sum_{\tau=0}^{t} g^{T}(t, \tau)\mathcal{B}^{T}(t-\tau)\Delta t}$, $g_{s}(\tau) = \frac{\kappa\gamma_{s}}{\kappa-\gamma_{s}}(e^{-\gamma_{s}\tau}-e^{-\kappa\tau}).$

Reproduction numbers of SEIIHURD model with vaccine

LEAKY VACCINE(SEVIIHURD)

PS: For an "all or none" vaccine, there would be an arrow from V to R_V and $\beta_{v(t)} = \beta(t)$, leading to $\mathcal{R}(t)$ that do NOT depend on vaccine efficacy.

Particular case
(SEIIHURD) :
$$\mathcal{R}(t) = \beta(t)S(t)\mathcal{P}$$

 $J(t) = \frac{I(t+1/k)}{b}$
 $g(-\tau) = \frac{\mathcal{Q}(\tau)}{\mathcal{P}}$

$$\mathcal{R}^{T}(t) = \beta(S(t) + V(t))[\mathcal{P} + c(t)\mathcal{P}_{v}]$$
$$c(t) = \frac{\beta_{v}S_{v}(t)}{\beta(S(t) + V(t))}$$
$$\mathcal{P} = \frac{p}{\gamma_{s}} + \frac{\delta(1-p)}{\gamma_{a}}$$
$$\mathcal{P}_{v} = \frac{p_{v}}{\gamma_{vs}} + \frac{\delta_{v}(1-p_{v})}{\gamma_{va}}$$

$$\beta_v(t) = (1-\varepsilon) \beta(t)$$

$$\mathcal{R}(t) = \frac{J(t)}{\int_0^\infty J(t-\tau)g(t,\tau)d\tau}$$
$$J(t) = \frac{I(t+1/k)}{p} + \frac{I_v(t+1/k_v)}{p_v}$$
$$g(t,\tau) = \frac{\mathcal{Q}(\tau) + c(t)\mathcal{Q}_v(\tau)}{\mathcal{Q}_v(\tau)}$$

 $\mathcal{P} + c(t)\mathcal{P}_v$

Ĵ

Vaccine effect in a dengue model with one serotype Basic reproduction number

Denguevaxia

$$S' = -\lambda MS$$

$$I' = \lambda MS - \gamma I$$

$$Z' = \gamma I - \phi p Z$$

$$Z'_{v} = \phi p Z$$

$$M' = \delta I (1 - M) - v M$$

$$R_{0} = \frac{\sqrt{S_{0}} \sqrt{\delta} \sqrt{\lambda}}{\sqrt{\gamma} \sqrt{v}}$$

For **two serotypes**, both values of R_0 depend on their vaccine efficacies. Comparing those values, we obtain in which scenarios Qdenga is more beneficit for population transmission and vice-versa.

x Qdenga

$$S' = -\lambda MS - \varphi pS$$

$$S'_{v} = -\lambda MS_{v}(1 - \epsilon) + \varphi pS$$

$$I' = \lambda MS - \gamma I$$

$$I'_{v} = \lambda M(1 - \epsilon)S_{v} - \gamma I_{v}$$

$$Z' = \gamma I$$

$$Z'_{v} = \gamma I_{v}$$

$$M' = [\delta I + \delta(1 - \epsilon)I_{v}](1 - M) - \nu M$$

$$R_{0} = \frac{\sqrt{\delta}\sqrt{S_{0} + S_{\nu 0} (-1 + \epsilon)^{2}} \sqrt{\lambda}}{\sqrt{\gamma} \sqrt{\nu}}$$

Vaccine effect in a dengue model with one serotype Effective reproduction number

Denguevaxia X Qdenga

$$\mathcal{R}(t) = \begin{pmatrix} 0 & \frac{s\lambda}{\nu} \\ \frac{\delta M_{\pi}}{\gamma} & 0 \end{pmatrix} \qquad \mathcal{R}(t) = \begin{pmatrix} 0 & 0 & \frac{S\lambda}{\nu} \\ 0 & 0 & \frac{S_{\nu}(1-\epsilon)\lambda}{\nu} \\ \frac{M_{\pi}\delta}{\gamma} & \frac{M_{\pi}(1-\epsilon)}{\gamma}\delta & 0 \end{pmatrix}$$

$$\mathbf{R}^{\mathsf{T}}(\mathsf{t}) = \sqrt{\mathcal{R}_{\mathbf{h}}\mathcal{R}_{\mathbf{m}}} = \sqrt{\mathcal{R}_{12}\mathcal{R}_{21}} \qquad \mathbf{R}^{\mathsf{T}}(\mathsf{t}) = \sqrt{\mathcal{R}_{13}\mathcal{R}_{31} + \mathcal{R}_{23}\mathcal{R}_{32}}$$

$$G(\tau) = \int_{0}^{\tau} g_{m}(a)g_{h}(\tau - a)da \quad \text{leads to} \qquad G(\tau) = \frac{(e^{-\tau\nu} - e^{-\tau\gamma})\gamma\nu}{\nu - \gamma}$$

$$\mathbf{R}^{\mathsf{T}}(\mathsf{t}) = \frac{B(t)}{\int_{0}^{\infty} G(\tau)B(t-\tau)d\tau}$$
38

Reproduction number for vector-borne diseases

$$\mathcal{R}(t) = \frac{\mathcal{F}(t)}{\int_0^\infty g(\tau) \mathcal{F}(t-\tau) d\tau}.$$
$$g(t) = \sum_{i=1}^4 \frac{s_1(t) s_2(t) s_3 s_4 e^{-s_i(t)t}}{\prod_{j=1, j \neq i}^4 (s_j(t) - s_i(t))}.$$

for which $s_i(t)$ varies depends on the entomological parameters that varies with temperature.

Exported cases X Movement

An example for parallel progression: SIIR model

.

Application of the method for multi-group models

Let us consider a metapopulation model for estimating the exported cases of COVID-19 between counts.

