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Abstract. Within a real-space renormalisation group framework, we discuss the criticality
of a system constituted by two (not necessarily equal) semi-infinite ferromagnetic ¢-state
Potts bulks separated by an interface. This interface is a bond-diluted Potts ferromagnet
mwammlMsmMMemt(mthoseo(bothbulks The phase
diagram presents four physically different phases. namely the paramagnetic one, and the
surface. single-bulk and double-bulk ferromagnetic ones. These various phases determine
a multicritical surface which contains a higher-order multicritical ine. Particular attention
is devoted to the discussion of the critical concentration p.. Here, p,_ is the concentration of
the interface bonds above which surface magnetic ordering is possible even if the bulks are
disordered. An interesting feature comes out which is that p, varies continuously with J,/J,
and J,/J,. The standard two-dimensional percolation concentration is recovered for J, =
J; = 0. From the analysis of the various fixed points obtained within the present formalism,
a very rich set of cnitical universality classes emerges.
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Modulation instability in the region of minimum group-velocity dispersion
of single-mode optical fibers via an extended nonlinear Schrodinger equation
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Modulation instability in the region of the minimum group-velocity dispersion is analyzed by
means of an extended nonlinear Schrodinger equation. It is shown that the critical modulation fre-
quency saturates at a value determined by the fourth-order dispersion. Experimental results demon-
strate the viability of generating a train of femtosecond pulses with repetition rates of a few
terahertz in reasonable agreement with the theory.
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Noise amplification in dispersive nonlinear media
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The propagation of a partially coherent optical beam through dispersive nonlinear media is investigat-
ed theoretically by using a phase-diffusion model for the laser beam. Changes in the second-order statis-
tical properties during beam propagation depend on whether the nonlinear medium exhibits normal or
anomalous group-velocity dispersion. In the case of normal dispersion, the coherence function and the
corresponding optical spectrum remain unaffected. By contrast, modulation instability is found to be re-
sponsible for noise amplification in the anomalous dispersion regime, enhancing phase fluctuations and
causing spectral distortion as well as coherence degradation. Under certain conditions, phase fluctua-
tions exhibit temporal oscillations that lead to the characteristic spectral sidebands associated with
modulation instability. The nonlinear Schrédinger equation is solved numerically to study the propaga-
tion regime in which the analytic theory becomes invalid.

PACS number(s): 42.65.—k, 42.50.Ar, 42.81.Dp
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Bragg scattering: power oscillations (coupled waves+ Gaussian num.)
Hermitian x PT-symmetric

Non-Hermitian photonics (PT-symmetry)
in QFT, in Optics

Results:
non-reciprocity, non-trivial behavior at the critical point,
Cross - spectral density approach

Gaussian-Schell source, spectral degree of coherence

Scattering of partially coherent light by a PT-symmetric medium




Optical Rabi Oscillations
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Bragg-resonance-induced Rabi oscillations in
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Fig. 2. (Color online) Fourier peak powers P, at k
=(kg,0) (solid line) and P, at k=(-kg,0) (dashed line),
their average values (straight lines), and the sum P;+P;
(dashed-dotted line). Here V,=0.05, e=1 and E(r,0)

=1/ \"1_r0' exp{ikgx-r?/(20%)} with o=50.



Propagation Equation

described by the dimensionless paraxial wave equation

By %Y

I 5z -+ ™ Vix)y =0, (1)
in arbitrary units. Let us define a potential function of the
form V(x) = a[cos® x + iBsin(2x)], with «,B representing
real parameters (with B positive). It is easy to verify that the
so-defined potential satisfies V(—x)* = V(x), and there is a
gain-loss parameter B that controls the degree of Hermiticity.
This parameter defines a spontaneous symmetry-breaking

point, 8. = 1/2, above which the spectrum undergoes a phase



Quantum field theory

Within the context of field theory

Axiom of QM

H=H* Hermitian g = ¥
e

v'energy spectrum is real & time evolution is unitary
(probability-preserving).

however




Non-Hermitian Hamiltonians

Making sense of non-Hermitian
Hamiltonians
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Unbroken PT symmetry
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PT symmetric Hamiltonians

PT = Parity time symmetry

P spatial inversion

X X P _ -P
T time reversal
X ., X P __, -P 5l
PT
X _, X P _, P IS
L0y R 0% Schrodinger’s equation

symmetric Hamiltonian__,  v(z) = v*(-z)
(PT)Y'H (PT)=H PT symmetry condition




Optical analogy

Paraxial Optics
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Paraxial equation of diffraction
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Quantum Mechanics

Schridinger equation
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PT symmetry in optics
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.\') PT-symmetric potential

Typical parameters
» X 0.5um < Ay < 1.64m A %107
g=-a~30cm™ Anp™ % 5107
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PT- symmetric experimental optics
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Scalable quantum computers hold the promise to solve hard computational problems, such as prime factor-
ization, combinatorial optimization, simulation of many-body physics, and quantum chemistry. While being
key to understanding many real-world phenomena, simulation of non-conservative quantum dynamics presents
a challenge for unitary quantum computation. In this work, we focus on simulating non-unitary parity-time sym-
metric systems, which exhibit a distinctive symmetry-breaking phase transition as well as other unique features
that have no counterpart in closed systems. We show that a qutrit, a three-level quantum system, is capable of
realizing this non-equilibrium phase transition. By using two physical platforms — an array of trapped ions and a
superconducting transmon — and by controlling their three energy levels in a digital manner, we experimentally
simulate the parity-time symmetry-breaking phase transition. Our results indicate the potential advantage of
multi-level (qudit) processors in simulating physical effects, where additional accessible levels can play the role
of a controlled environment.
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We study Bragg-induced power oscillations in Fourier space between a pair of optical resonant transverse
modes propagating through a periodic P7 -symmetric lattice, represented by a refractive index that includes gain
and loss in a balanced way. Our results imply that the P7 -symmetric system shows exceptionally rich phenomena
absent in its Hermitian counterpart. It is demonstrated that the resonant modes exhibit unique characteristics,
such as Bragg power oscillations controlled via the P7 symmetry, severe asymmetry in mode dynamics, and
trapped enhanced transmission. We have also performed numerical simulations in (1+1) and (2+1) dimensions
of propagating Gaussian beams to compare with analytical calculations developed under a two-waves model.

DOI: 10.1103/PhysRevA.96.053841



Two-waves model

equation by writing the field as
Yx.2)= ) Ya(2)exp(inkyx), 2)

n=xl,x2...

where k;, = 1 1s the resonant transverse wave vector and the
index n indicates the nth mode that is Bragg resonant with the
lattice. Substituting (2) into (1), one arrives at the following
set of coupled differential equations:

dy,
dz

i

- anwn + b%—z + CWn+2 (3)

= (n* + 5) b— %(ﬁc+ﬁ), ¢ = %(ﬁc — B).



Non-reciprocity
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FIG. 2. Gaussian beam propagation below the phase transition
point (8 < B.) in both real (upper panels) and Fourier spaces (lower
panels), illustrating power oscillations with 8 = 0.2anda = 0.5. Left
column: {¥r_1(0),¥1(0)} = {0,1}. Right column: {¢_;(0),¥1(0)} =
{1,0}. Excited modes outside the first Brillouin zone are indistin-
guishable from the horizontal zero axis line.
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FIG. 3. Wide Gaussian beam propagation at the critical phase
point (8 = B.) in both real (upper panels) and Fourier (lower
panels) spaces, with initial width X, = 15p (p is the lattice period)
incident on a P7 -symmetric lattice at the critical point. Left column:
{¥-1(0),¥1(0)} = {1,0}. Right column: {¥_,(0),¥,(0)} = {0, 1}. Ex-
cited modes outside the first Brillouin zone are indistinguishable from
the zero horizontal axis line.



Stochastic Theory

function. Under general conditions, likely to be valid in many
systems of interest, the cross-spectral density of a statistical
stationary source is defined as

W(x1,x2,2) = (Y™ (x1, )Y (x2, 2)) w5 (10)

where (-),, implies an ensemble average of monochromatic
realizations of the incident optical field.



Wave equation for the cross- spectral density

Let us begin by considering a statistically stationary opti-
cal field ¢(x,z,t) characterized by its cross-spectral density
Wir(z,w) = W(xq1,x2,2,w), defined as the Fourier transform of
the mutual coherence function I'(x1, xp, T) = (¥*(x1,t)P(xp, £ +
T)). The field varies in the (x, z) plane, with z being the main
propagation direction, and w the angular frequency, which we

omit from now on. The cross-spectral density characterizes
field correlations between the transverse positions x; and x; at
frequency w. Assuming that each element of the ensemble rep-
resenting the optical field satisfies the paraxial wave equation



Effective potential

1, (x,2) + Pex(x,2) + V(x)9p(x,2) = 0, it is easy to demonstrate
that the cross-spectral density evolves according to [11]

z-3‘"\712 (2)
0z

+ _32 - _32 W + Vi, W =
0, 1

where Vi, = V(x3) — V*(x1) is the effective potential repre-
senting the transverse variations of the refractive index profile
V(x) relative to a substrate where the heterogeneous material is
deposited.



Gaussian-Schell Beam

The simplest nontrivial model of a random optical beam is the
Gaussian-Schell beam, and therefore we choose one for which
the initial correlation profile is given by,

W12(0) e~ (xl.x.xz)/4(72 —(x1—x2) 2 /242 —zq(xl—xz) 2)

where o is related to the initial beam width, 4 is the co-
herence parameter and g the incident transverse wavevec-
tor. The beam is fully coherent in the limit 6 — oo. The
initial spectral density is described by a Gaussian function

S(x,0) = W(x,x,0) = e */27, To numerically solve Eq.

"..sources of 6-S beam are frequently encountered in nature and can readily

be produced in the lab." (excerpt from Introduction to the theory of coherence

and polarization of light, by Emil Wolf, Cambridge .)
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Fig. 4. Beam evolution of partially coherent light in a periodic
potential at the symmetry breaking point § = 1. (a) Beam

center. Continuous (dashed) lines represent g = 0.5 (g = —0.5).

(b) Evolution of the spectral density for various values of the
coherence parameter. (c) and (d) show the spectral density in
the plane (x,z) atq = 0.5and g = —0.5, respectively. The
coherence parameters are § = 10 (yellow), § = 20 (orange) and

4 = 80 (blue).
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quite robust under the lack of
correlations in contrast with S
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Non-Hermitian, at the critical p, = 1, fully coherent



Spectral degree of coherence

[ IW(x, x2,2)|* dxqdx;

W (2) >
[ [ S(x,z2) dx]

G-S sources: spectral degree of coherence p(xy, x,)
depends only on the distance between the two points



partial correlation modifies
the medium response

correlations are induced
into an uncorrelated beam
by the non-Hermitian
medium!

Fig. 5. Effective degree of coherence y(z) as a function of prop- .

agated distance z for a PT-symmetric lattice (a) below and (b)

above the symmetry breaking point.
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Spatial
coherence
from ducks

It is not generally appreciated that ra-
diation from wuncorrelated random
sources—for example, radiation gener-
ated by spontaneous emission of light by
atoms—can produce a well-behaved,
spatially coherent field over large re-
gions. An illustration of this fact is the
diffraction image of a star in the focal
plane of a telescope. On a good observ-
ing night, the image will consist of a
bright central spot surrounded by dark
rings that represent regions in the focal
plane where destructive interference
cancels the light. This is a manifestation
of strong correlation—a high degree of
spatial coherence —between light fluctu-
ations in the aperture of the telescope.
The phenomenon illustrates the so-
called van Cittert-Zernike theorem of
optical coherence theory.'?

In this letter we provide an example
of the generation of spatial coherence.
Thirteen Rouen ducks jump into a still

one-acre pond, disturbing the surface
at randomly distributed positions and
times. The water surface exhibits an
irregular, rather incoherent spatial pat-
tern, as seen in panel a of the figure.*
With increasing distance and time, the
pattern evolves into a more regular one,
as captured in panels b, ¢, and d, which
clearly indicate the generation of spatial
coherence in the far field from ran-
domly distributed sources.
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Generation of spatially coherent water waves from randomly distributed wave dis-
turbances produced by 13 ducks jumping into a pool at time 00:47:12. The frame
times are indicated.
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