Cellular criticality

Sergio A. Cannas

Statistical Mechanics for Complexity 2023 80th birthday of C. Tsallis celebration

Collaborators

Dante R. Chialvo

Universidad Nacional de San Martin, Buenos Aires, Argentina (CONICET)

Orlando Billoni

Universidad Nacional de Córdoba, Argentina (IFEG-CONICET)

Nahuel Zamponi

Department of Medicine, Weill Cornell Medicine, USA

• Emiliano Zamponi

University of Colorado-Boulder, USA

• Set of tubular shaped organelles (mitochondrion) found in the cells of most eukaryotic organisms.

- Set of tubular shaped organelles (mitochondrion) found in the cells of most eukaryotic organisms.
- Main function: ATP (adenosine triphosphate) generation

- Set of tubular shaped organelles (mitochondrion) found in the cells of most eukaryotic organisms.
- Main function: ATP (adenosine triphosphate) generation
- Origin (endosymbiotic theory): symbiosis between prokariotic cells (bacteria) and a primitive eukaryotic cell that started about 2.3 billion years ago.

- Set of tubular shaped organelles (mitochondrion) found in the cells of most eukaryotic organisms.
- Main function: ATP (adenosine triphosphate) generation
- Origin (endosymbiotic theory): symbiosis between prokariotic cells (bacteria) and a primitive eukaryotic cell that started about 2.3 billion years ago.
- Other functions: participate of several cellular processes, such as apoptosis (programmed cell death), phospholipids synthesis, regulation of membrane potential, etc..

MORPHOLOGY

10 µm

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

 X_k : nodes with degree k = 1, 2, 3

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

 X_k : nodes with degree k = 1, 2, 3

tip-to-tip fusion (a_1) and fission (b_1) :

$$2X_1 \xrightarrow[b_1]{b_1} X_2$$

tip-to-side fusion (a_2) and fission (b_2) :

$$X_1 + X_2 \xrightarrow[b_2]{a_2} X_3$$

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

OPEN O ACCESS Freely available online

PLOS COMPUTATIONAL BIOLOGY

Emergence of the Mitochondrial Reticulum from Fission and Fusion Dynamics

Valerii M. Sukhorukov^{1,2}*, Daniel Dikov^{3,4}, Andreas S. Reichert^{3,4}, Michael Meyer-Hermann^{1,5}*

Dynamics: Gillespie algorithm with N_e dimers

PHASE DIAGRAM

 $N_e = 15000$

$$\langle s \rangle = \frac{\sum_{s}' N_{s} s^{2}}{\sum_{s}' N_{s} s}$$

PHASE DIAGRAM

1e-3 400 $- c_1 = 0.1$ 300 - c₁ = 0.01 percolated phase ■— c₁ = 0.001 ഗ്[∾] 1e-4 200 T T 100 fragmented phase 0 1e-5 -10⁻³ 10-6 10⁻⁵ 10-4 10⁻² 1e-5 1e-4 1e-2 1e-3 1e-1 C_2 C_1

 $N_e = 15000$

 $\langle s \rangle = \frac{\sum_{s}' N_s s^2}{\sum_{s}' N_s s}$

In which part of this phase diagram might real mitochondria be located?

EXPERIMENTS

• Imaging using confocal microscopy on genetically modified cells: mouse embryonic fribroblasts

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, Scientific Reports 8, 363 (2018)

Morphology manipulation: treatments

- Paraquat (pqt): promotes fission
- Mitofusin (mfn): promotes fusion

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, Scientific Reports 8, 363 (2018)

MEAN FIELD MODEL

MEAN FIELD MODEL

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, Scientific Reports 8, 363 (2018)

QUESTIONS:

• Do the fusion/fission mechanism really generate criticality? Finite size scaling?

QUESTIONS:

- Do the fusion/fission mechanism really generate criticality? Finite size scaling?
 - Universality class?

QUESTIONS:

- Do the fusion/fission mechanism really generate criticality? Finite size scaling?
 - Universality class?
 - What happens in finite dimension?

Mean field model: finite size scaling

 $\max < s > \sim N^{\gamma/= d}$ $\max < N_2 > \sim N^{df/d}$

 $c_1 = 0.01$

 $n_s \sim s^{-\tau} \exp(-s/s^*)$ CCDF(s) = $\sum_{s' = s} n_{s'}$

 $CCDF \sim s^{-(\tau-1)} exp(-s/s^*)$

Mean field model: finite size scaling

Spatially explicit model (2D)

Real mitochondria: finite size scaling

	τ	γ/vd	d_f/d
Mean field standard perc.	5/2 = 2.5	$1/3 \approx 0.33$	$2/3 \approx 0.66$
Mean field directed perc.	3	1/2	1/2
Mean field model	2.38 ± 0.04	0.7 ± 0.01	0.82 ± 0.01
3D standard perc.	2.15	0.67	0.84
2D standard perc.	$187/91 \approx 2.055$	$43/48 \approx 0.896$	$91/96 \approx 0.948$
2D directed perc.	≈ 2.66	≈ 1.07	pprox 0.60
2D model	2.0 ± 0.1	0.86 ± 0.02	0.91 ± 0.02
Experiments	2.01 ± 0.01	0.82 ± 0.08	1.01 ± 0.06

Conclusions

• Fission/fusion balance in the microscopic dynamics puts mitochondria into a percolation like critical point.

Conclusions

- Fission/fusion balance in the microscopic dynamics puts mitochondria into a percolation like critical point.
- Moving away from criticality leads mitochondria (and therefore the cell) to a pathological state.

Conclusions

- Fission/fusion balance in the microscopic dynamics puts mitochondria into a percolation like critical point.
- Moving away from criticality leads mitochondria (and therefore the cell) to a pathological state.
- Mitochondrial critical point belongs to the standard percolation universality class.

N. Zamponi, E. Zamponi, S.A. Cannas, O.V. Billoni, P. Helguera, D. R. Chialvo, *Mitochondrial network complexity emerges from fission/fusion dynamics,* Scientific Reports **8**, 363 (2018)

N. Zamponi, E. Zamponi, S.A. Cannas, D. R. Chialvo, *Universal dynamics of mitochondrial networks: a finite-size scaling analysis,* Scientific Reports **12**, 17074 (2022)

Happy Birthday Constantino!