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Motivation

• The Hopfield associative memory model has been used to repre-
sent an approximation of human memory functioning, and also as
an artificial storage device. Neural networks (NNs) used to model
associative memory consist of dissipative units (neurons).

• Units interact in a way that the network admits a global energy
or Liapunov function.

• The network’s global dynamics is such that the system evolves
downhill in the energy landscape.

• In most models for associative memory, individual neurons are
described as one-dimensional, dynamical systems.
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• The capacity of human memory to store and retrieve information
is central to many mental processes, be they normal, pathological,
conscious or unconscious.

• These have been widely studied by psychiatry, psychoanalysis, neu-
roscience and computational science.

• In recent years, we have developed schematic simulation mod-
els based on associative memory that represent aspects of some
mental processes as described by psychoanalysis: neurosis, cre-
ativity, delusions and the interaction between consciousness and
unconsciousness.

• We used Hopfield-like networks and generalizations such as the
Boltzmann Machine and Generalized Simulated Annealing (GSA).

1. M. Siddiqui, R. S. Wedemann, and H. J. Jensen, Physica A, 490, 2018.
2. R. S. Wedemann, R. Donangelo, and L. A. V. Carvalho, Chaos 19, 2009.
3. R. S. Wedemann, L. A. V. Carvalho, and R. Donangelo, Neurocomputing, 71,

2008.
4. C. Tsallis and D. A. Stariolo, Physica A, 233, 395—406, (1996).
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• Most of the fundamental models in theoretical biology exhibit a
dynamics that is dissipative.

• Important examples: Lotka-Volterra models in biological popula-
tion dynamics; continuous, Hopfield NN models1; Cohen-Grossberg
network models1, and various mathematical models for biological,
evolutionary processes.

• All biologically inspired models supporting universal computation
are nonconservative or, in the case of discrete models, nonre-
versible.

• They exhibit a modular structure consisting of a set of interacting
units, each one characterized by an intrinsic dissipative dynamics.

• In order to represent the complexity of real biological neurons,
one may need to describe them as dynamical systems with two
or more dimensions. For instance, effects of time-delay lead to
multidimensional dynamics.

1. Cohen and Grossberg, IEEE Trans. on Systems, Man, and Cybernetics, 1983
and Hopfield, Proc. Natl. Acad. Sci. 81, 1984.
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• We thus extend the structural description of associative mem-
ory NNs to more general scenarios, and formulate a family of NN
models, with interacting, dissipative, multi-dimensional neurons
(units), encompassing other biological models with nonconserva-
tive dynamics.

• These models generate dynamical features akin to those required
when modeling associative memory.

1. Nakamura, Y., Torii, K., Munakata, T.: Neural-network model composed of
multidimensional spin neurons. Phys. Rev. E, 51 1538-1546, (1995)

2. Stewart, I., Golubitsky, M.: Symmetric networks with geometric constraints as
models of visual illusions. Symmetry 11(6), 799 (2019)

3. Solazzi, M., Uncini, A.: Adaptive multidimensional spline neural network for
digital equalization, Neural Netw. Signal Process. X. Proc. 2000 IEEE Signal
Process. Soc. Workshop (Cat. No. 00TH8501) vol.2, 729–735 (2000)

4. Manzhos, S., Carrington, T., Ihara, M.: Orders of coupling representations as
a versatile framework for machine learning from sparse data in high-dimensional
spaces. Artificial Intelligence Chemistry 1(2), 100008 (2023)
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A Continuous Network with Multidimensional
Neurons
We advance a continuous, associative memory, NN model with N mul-
tidimensional neurons.

• The i-th neuron (i = 1, . . . , N) is modeled as an ni-dimensional, dissipative,
dynamical system. Different neurons may have different dimensions.

• States of a neuron, are given by an ni-dimensional vector Xi.

• Two scalar functions Wi(Xi) and ai(Xi) > 0, and two ni-dimensional vector
functions Bi(Xi) and Di(Xi) are associated with each neuron. These are
related to the intrinsic dynamics of i, and with the output signals through
which i affects the dynamics of other neurons.

• There is an ni × ni positive-definite, symmetric square matrix Mi(Xi).

• Independent functions that characterize the dynamics of i are ai, Wi and Di.

• AT denotes the transpose of a matrix A.

Bi = −Mi∇Wi , (1)
and

(

Mi
−1
)T

=
∂Di

∂Xi
. (2)

6



• The ni × ni square matrix ∂Di

∂Xi
is the Jacobian matrix associated with Di(Xi),

∂Di

∂Xi
=











∂Di;1

∂Xi;1
· · · ∂Di;1

∂Xi;ni

· · · · · · · · ·
· · · · · · · · ·
∂Di;ni

∂Xi;1
· · ·

∂Di;ni

∂Xi;ni











. (3)

Xi;j and Di;j are the j-th components of vectors Xi and Di.

• The positive-definite character of matrix Mi means that, for any vector V ∈ ℜni,
one has

V
T
MiV > 0 . (4)

• In the above and similar equations, we consider V as an ni-dimensional column
vector, and V T as a row vector.

• Interactions between the neurons are codified in an N ×N matrix array C, with
elements Cik, i, k = 1, . . . , N . Each Cik , which describes the interaction between
neuron i and neuron k, is itself an ni×nk rectangular matrix whose elements are
real numbers. The elements of the matrices Cik are constants, not depending
on the neurons’ states. We assume that1

Cki = Cik
T . (5)

1. See R. S. Wedemann, A.R. Plastino, C. Tsallis, Phys. Rev. E 94, 2016 for a
discussion on symmetry of connections
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Dynamics of a single neuron i is governed by the equations of motion

dXi

dt
= aiBi = −aiMi∇Wi , (6)

where ∇ represents the gradient, ∇Wi = (∂Wi/∂Xi;1, . . . , ∂Wi/∂Xi;ni)
T .

Wi plays the role of a potential energy (or Liapunov) function. Indeed,
let us consider the time derivative of Wi,

dWi

dt
= (∇Wi)

T ·
dXi

dt
= −ai (∇Wi)

T
Mi (∇Wi) < 0 , (7)

where we used the fact that Mi is a positive-definite matrix.

Therefore, an isolated neuron always evolves downhill in the Wi, multi-
dimensional landscape. Vector dXi/dt does not, in general, point in
the direction opposite to ∇Wi, but always has a negative projection
on the direction of ∇Wi.
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We now consider a network of N interacting neurons, whose equations
of motion are

dXi

dt
= ai

[

Bi −

N
∑

k=1

CikDk

]

, i = 1, . . . , N . (8)

The first term within the bracket corresponds to the intrinsic dynamics
of the i-th neuron, while the second term describes the effects of the
other neurons on the dynamics of i.

Strengths of the interactions between neurons are given by the matrices
Cik.

The effects of the k on i are given by the elements of the matrix
Cik, and not by a single coefficient, as in a standard Hopfield neural
network.
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Liapunov Function
We now prove that our NN model admits a Liapunov, or energy function. Let us
consider the function

Ω(X1, . . . ,XN) =

[

N
∑

i=1

Wi(Xi)

]

+
1

2

[

N
∑

i,k=1

Di
T
CikDk

]

. (9)

Ω is a function of the total state of the network, given by the set of vectors
(X1, . . . ,XN).

We compute the time derivative of Ω,

dΩ

dt
=

{

N
∑

i=1

(∇Wi)
T ·

dXi

dt

}

+
1

2

N
∑

i,k=1

[

dDi
T

dt
CikDk + Di

T
Cik

dDk

dt

]

. (10)

Substituting dXi

dt
by the right hand sides of the equations of motion (8), yields

dΩ

dt
=

{

N
∑

i=1

ai (∇Wi)
T ·

[

Bi −

N
∑

k=1

CikDk

]}

+
1

2

N
∑

i,k=1

[

dDi
T

dt
CikDk + Di

T
Cik

dDk

dt

]

. (11)
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Using the expression (1) for the Bi, and the symmetry property (5) of the Cik,

dΩ

dt
= −

[

N
∑

i=1

aiBi
T ·
(

Mi
−1
)T

Bi

]

+

{

N
∑

i=1

aiBi
T ·
(

Mi
−1
)T

[

N
∑

k=1

CikDk

]}

+

[

N
∑

i,k=1

dDi
T

dt
CikDk

]

. (12)

We want to prove that the time derivative dΩ/dt is always non-positive.

We need first to consider the time derivative of the vectors Di(Xi). We have

dDi

dt
=

∂Di

∂Xi

dXi

dt
=

∂Di

∂Xi
ai

[

Bi −

N
∑

j=1

CijDj

]

, (13)

implying that

dDi
T

dt
= ai

[

Bi
T −

N
∑

j=1

Dj
T
Cji

]

(

∂Di

∂Xi

)T

, (14)

where ∂Di

∂Xi
is the Jacobian matrix of the vector-valued function Di(Xi) (eq. (3)).
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Using relation (2), one obtains

dDi
T

dt
= ai

[

Bi
T −

N
∑

j=1

Dj
T
Cji

]

M−1
i . (15)

Substituting dDi
T

dt
in (12) by the right hand side of (15), one gets

dΩ

dt
= −

[

N
∑

i=1

aiBi
T ·
(

Mi
−1
)T

Bi

]

+

[

N
∑

i=1

aiBi
T ·
(

Mi
−1
)T

(

N
∑

k=1

CikDk

)]

+





N
∑

i=1

ai

(

N
∑

k=1

CikDk

)T
(

M−1
i

)T
Bi





−





N
∑

i=1

ai

(

N
∑

k=1

CikDk

)T
(

M−1
i

)T

(

N
∑

j=1

CijDj

)



 . (16)
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It follows from (16), and that ai(Xi) > 0 and the matrices Mi are positive-definite
that

dΩ

dt
= −

N
∑

i=1

aiVi
T
(

Mi
−i
)T

Vi ≤ 0 , (17)

where

Vi = Bi −

(

N
∑

j=1

CijDj

)

. (18)

Our network model thus exhibits a dynamics admitting an energy, Liapunov function
Ω. Ω can be decomposed as the sum of two terms: one inherited from the gradient-
like character of the units’ intrinsic, dissipative dynamics, and one arising from the
interactions between the neurons.

The system always evolves downhill in the energy landscape, tending to the land-
scape’s local minima, complying with the basic behavior typical of an associative
memory NN.
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Connection with the Cohen-Grossberg NN
Model
The NN models proposed by Cohen and Grossberg1 constitute a particular instance
of the general models described by the equations of motion (8).

Consider the particular instance of the dynamical system (8), where the behavior of
neurons are determined by one-dimensional, dynamical systems, i.e. the case where
ni = 1, i = 1, . . . , N .

Then the state of each neuron is described by a single number xi, the functions
ai(Xi), Bi(Xi) and Di(Xi) become the single-variable, real-valued functions ai(xi),
bi(xi) and di(xi), and each matrice Ci,j becomes a single numerical coefficient cij (the
weights).

The NN’s equations of motion (8) then reduce to those of the neural network model
proposed by Cohen and Grossberg1, which are

dxi

dt
= ai(xi)

[

bi(xi)−

N
∑

k=1

cikdk(xk)

]

, i = 1, . . . , N , (19)

where the functions ai(xi) and di(xi) comply with ai(xi) > 0 and d′i(xi) > 0.

1. Cohen and Grossberg, IEEE Trans. on Systems, Man, and Cybernetics, 1983
and Hopfield, Proc. Natl. Acad. Sci. 81, 1984.
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Condition (5) reduces to the requirement of symmetric weights, cij = cji.

The energy (Liapunov) function is then

Ω =

N
∑

i=1

Wi(xi) +
1

2

N
∑

i,k=1

cikdi(xi)dk(xk) , (20)

where

Wi(xi) = −

∫ xi

0

bi(z)d
′
i(z)dz. (21)

This energy function coincides with the one derived by Cohen-Grossberg.

The equations of motion (19) can be recast in terms of the partial derivative of the
Liapunov function Ω, as

dxi

dt
= −

[

ai(xi)

d′i(xi)

]

∂Ω

∂xi
. (22)

These equations govern the dynamics of the network’s state, which at each instant
is represented by the N phase-space variables {x1, x2, · · · , xN}.
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The Hopfield model for continuous NNs constitutes a particular real-
ization of the Cohen-Grossberg model.

When ai(xi) = −1/τi, bi(xi) = xi, and di(xi) = g(xi), where all the τi’s
are constant parameters, the equations of motion (19) become

τi
dxi

dt
= −xi +

N
∑

j=1

cij g(xj) , (23)

which have the same form as the equations governing the continuous
Hopfield model.
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Concluding Remarks

1. We investigated an extension of the structural scheme of associative mem-
ory, NNs to more general settings, where the neurons are described by multi-
dimensional, dissipative, dynamical systems.

2. We advanced a coupling scheme for dissipative, multi-dimensional units, that
leads to dynamical features akin to those required when modeling associative
memory.

3. The family of NNs that we have proposed admits an energy (Liapunov) function,
such that the network always evolves downhill in the energy landscape.

4. Our general scheme includes, as particular instances, the continuous NNs pro-
posed by Cohen and Grossberg, as well as the continuous version of the Hopfield
model.

5. It would be interesting to explore the implications of our model, with respect
to the tension between conservative and nonconservative dynamical models in
biology.

6. It would also be worth to investigate possible relations between our approach
to networks of multi-dimensional neurons, and intriguing recent developments
on the theory of quantum mechanical NNs.
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“As Biologists come to focus more of their efforts on

the brain-mind, most of them have become convinced

that the mind will be to the biology of the twenty-

first century what the gene has been to the biology of

the twentieth century. Thus, Francois Jacob (1998)

writes, ‘the century that is ending has been preocu-

pied with nucleic acids and proteins. The next one

will concentrate on memory and desire. Will it be

able to answer the questions they pose?’ ”

Eric Kandel (Nobel prize in physiology or medicine, 2000), “Biology

and the Future of psychoanalysis, a new intellectual framework for

psychiatry revisited”, 1999, in Psychiatry, Psychoanalysis and the New

Biology of Mind.
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