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1. Introduction
Brownian fluctuations arise for any quantity that de-
pends on the stochastic variables of a Brownian parti-
cle. In this study, we explore the Brownian fluctuations
of a bidimensional quadratic potential that exhibits two
regimes: a confining regime and a non-confining regime.
We divide the total potential into two contributions and
analyze the central moments and their distributions for
each contribution as well as for the total potential.
The system of interest is given by a set of two Langevin
equations

γẋ(t) = −kx(t) + uy(t) + ηx(t), (1)

γẏ(t) = −ky(t) + ux(t) + ηy(t), (2)

corresponding to the variation of the position of the par-
ticle in a (x(t), y(t)) position with a white noise ηi(t).
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Figure 1: Two distinct regimes of the full potential, V (x, y), in the left the non-
confining, and in the right the confining. Note that, despite the coupling, the con-
fining is qualitatively almost of the same shape of the harmonic potential.

2. Methodology
We use path integral formalism to calculate the condi-
tional probability, meaning

P (xτ , yτ |x0, y0) =
∫

Dx

∫
Dy exp

(
− 1

4γT
S[x, y]

)
. (3)

The joint probability is given by

P (xτ , yτ , x0, y0) = P (xτ , yτ |x0, y0)P (x0, y0), (4)

where P (x0, y0) = δ(x0)δ(y0).
The conditional probability is valid for any regime of k
and u, including k < u, which is not of interest for this
work. It is noteworthy to mention that for asymptotic
times

lim
τ→∞

P (xτ , yτ |x0, y0) →
√
k2 − u2

2πT

× exp

(
−
k
(
x2τ + y2τ

)
− 2uxτyτ

2T

)
. (5)

With the joint probability, we calculate the generating
function of the distributions, that has a general form

ZO(λ) =

√
α3√

α1λ2 + α2λ + α3

, (6)

where αi(i = 1, 2, 3) variates for each potential segment
O = {∆U,∆Vnc,∆V }. From the generating function, it is
possible to calculate the central moments, and the prob-
ability distributionP (O) is given by the Fourier transform
of ZO(λ).

3. Results
We calculate:

• Central moments: mean (µ), variance (σ2), skewness
(µ3), and the curtosis excess (κ). For each distribution,
we calculated the variation of the moments with the
time and the factor u, with relation to k,

• Probability distributions P (∆V ) for each potential
term, and for the total potential.
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Figure 2: Probability distribution of the non-confining potential P (∆U), varying
with ∆U , and the purple stars representing our results for the simulations of
Langevin equation. In (a), distributions for different values of k are depicted. In
(b), the variation of P (∆U)with∆U for different values of time τ .
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Figure 3: Probability distribution of the non-confining potential P (∆Vnc), varying
with ∆Vnc, and the purple stars representing our results for the simulations of
Langevin equation. In (a), distributions for different values of k are depicted. In
(b), the variation of P (∆Vnc)with∆Vnc happens for different values of time τ .

For the non-harmonic distribution, we obtained an ana-
lytical expression, that gives origin to a irreversibility ratio

lim
τ→∞

lim
k→u

log
(

P (∆Vnc)

P (−∆Vnc)

)
= −2∆Vnc

T
, (7)

which is a mathematical consequence of the expression
for P (∆Vnc).
We calculated the central moments for each distribu-
tion. For instance, considering the total potential∆V :
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Figure4: VariationofCentralMoments of the total potential distributionwith time
τ . a) Evolution of σ2

∆V with the time τ . b) Skewness of the total distribution µ3,∆V

variating with the time τ . c) Kurtosis of the total distribution κ∆V variating with
the time τ .
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Figure 5: Variation of P (∆V ) with ∆V , with purple stars representing our results
for the simulations of Langevin equation. In (a), P (∆V ) is depicted variating with
∆V , for different values of k. In (b), P (∆V ) is depicted variating with ∆V , for dif-
ferent times τ .

4. Conclusions
We calculated the Brownian fluctuations of a quadratic
potential, which exhibits two regimes, one of confine-
ment and one of non-confinement. These fluctuations
are inherent to the system, that consists of a Brown-
ian particle in two dimensions, with motion starting at
the origin. Remarkably, as a mathematical consequence
of P (∆Vnc), in the asymptotic limit of the non-confining
limit k → u the log ratio between P (∆Vnc)

P (−∆Vnc)
gives origin to a

irreversibility ratio that is identical to the Crooks’ fluctua-
tion theorem. This is purely amathematical consequence
to the form of the potential.
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