VIIIA FORMA

Universidade Federal do Ceará Departamento de Física

A Maximum Entropy Model for the Network of Commercial Transactions between Cities based on Data from Electronic Invoices

José Soares de Andrade Jr.

Departamento de Física - UFC

Fortaleza, Ceará, Brazil

t-SC

Conselho Nacional de Desenvolvimento Científico e Tecnológico

It started with disordered superconductors...

VOLUME 86, NUMBER 16

PHYSICAL REVIEW LETTERS

16 April 2001

Flux Front Penetration in Disordered Superconductors

Stefano Zapperi,¹ André A. Moreira,² and José S. Andrade, Jr.² ¹INFM sezione di Roma 1, Dipartimento di Fisica, Università "La Sapienza," P.le A. Moro 2, 00185 Roma, Italy ²Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil (Received 7 November 2000)

We investigate flux front penetration in a disordered type-II superconductor by molecular dynamics simulations of interacting vortices and find scaling laws for the front position and the density profile. The scaling can be understood by performing a coarse graining of the system and writing a disordered nonlinear diffusion equation. Integrating numerically the equation, we observe a crossover from flat to fractal front penetration as the system parameters are varied. The value of the fractal dimension indicates that the invasion process is described by gradient percolation.

DOI: 10.1103/PhysRevLett.86.3622

PACS numbers: 74.60.Ge, 05.45.-a, 47.55.Mh

Collecting all the terms, we finally obtain a disordered nonlinear diffusion equation for the density of flux lines

$$\Gamma \,\frac{\partial \rho}{\partial t} = \vec{\nabla} (a\rho \,\vec{\nabla} \rho \,-\,\rho \,\vec{F}_c) \,+\,k_B T \nabla^2 \rho \,. \tag{5}$$

And the Tsallis thermostatistics was there!

PRL 105, 260601 (2010)

PHYSICAL REVIEW LETTERS

week ending 31 DECEMBER 2010

Thermostatistics of Overdamped Motion of Interacting Particles

J. S. Andrade, Jr.,^{1,3} G. F. T. da Silva,¹ A. A. Moreira,¹ F. D. Nobre,^{2,3} and E. M. F. Curado^{2,3}

¹Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil ²Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil ³National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil (Received 8 August 2010; published 22 December 2010)

> We show through a nonlinear Fokker-Planck formalism, and confirm by molecular dynamics simulations, that the overdamped motion of interacting particles at T = 0, where T is the temperature of a thermal bath connected to the system, can be directly associated with Tsallis thermostatistics. For sufficiently high values of T, the distribution of particles becomes Gaussian, so that the classical Boltzmann-Gibbs behavior is recovered. For intermediate temperatures of the thermal bath, the system displays a mixed behavior that follows a novel type of thermostatistics, where the entropy is given by a linear combination of Tsallis and Boltzmann-Gibbs entropies.

DOI: 10.1103/PhysRevLett.105.260601

PACS numbers: 05.10.Gg, 05.20.-y, 05.40.Fb, 05.45.-a

is a conveniently rescaled variable. This functional leads to the following entropic form:

$$S[P] = \frac{D}{\bar{\gamma}} \left[1 - \int_{-\infty}^{\infty} dx P^2(x, t) \right] - \frac{k_B T}{\bar{\gamma}} \int_{-\infty}^{\infty} dx P(x, t)$$
$$\times \ln P(x, t). \tag{17}$$

Equation (17) is precisely the sum of Tsallis entropy with $\nu = 2$, which appears as a consequence of many-body

 $k_BT \gg a$, i.e., $\langle x^2 \rangle \propto t$. In the presence of a restoring external force and for T > 0, a stationary-state analytical solution for Eq. (13) can still be obtained,

$$\rho(x) = \frac{k_B T}{a} W \left\{ \frac{a\rho(0)}{k_B T} \exp\left[\frac{a\rho(0)}{k_B T} - \frac{\alpha x^2}{2k_B T}\right] \right\}, \quad (15)$$

where the *W*-Lambert function is defined implicitly through the equation $W(z)e^{W(z)} = z$ (see [22] and references therein). In order to test this prediction, extensive MD

Thermostatistics of Overdamped Motion of Interacting Particles

J. S. Andrade, Jr.,^{1,3} G. F. T. da Silva,¹ A. A. Moreira,¹ F. D. Nobre,^{2,3} and E. M. F. Curado^{2,3}

¹Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Ceará, Brazil

²Centro Brasileiro de Pesquisas Físicas, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil

³National Institute of Science and Technology for Complex Systems, Rua Xavier Sigaud 150, 22290-180, Rio de Janeiro-RJ, Brazil (Received 8 August 2010; published 22 December 2010)

Nonextensive Statistics and Complex Networks

✓ Dynamical and Growth Models:

- D. Soares, C. Tsallis, A. Mariz, and L. da Silva, Preferential attachment growth model and nonextensive statistical mechanics, Europhys. Lett. 70, 70 (2005).
- S. Brito, L. da Silva, and C. Tsallis, Role of dimensionality in complex networks, Sci. Rep. 6, 27992 (2016).
- S. Brito, T. C. Nunes, L. R. da Silva, and C. Tsallis, Scaling properties of *d*-dimensional complex networks, Phys. Rev. E 99, 012305 (2019).

Prof. Luciano da Silva A Real Force of Nature!

✓ Random Network Models:

PHYSICAL REVIEW RESEARCH 5, 033088 (2023)

Random networks with q-exponential degree distribution

Cesar I. N. Sampaio Filho[®],¹ Marcio M. Bastos[®], Hans J. Herrmann[®],^{1,2} André A. Moreira,¹ and José S. Andrade, Jr.[®]¹ ¹Departamento de Física, Universidade Federal do Ceará, 60451-970 Fortaleza, Brazil ²PMMH, ESPCI, CNRS UMR 7636, 7 quai St. Bernard, 75005 Paris, France

1) Using the Configurational Model, we can generate random unbiased complex networks exhibiting *q*-exponential degree distributions with arbitrary parameter values.

2) With an additional degree of freedom, these networks generalize the scale-free ones, therefore having great flexibility with respect to topological and transport properties, like assortativity, small-world behavior, and resilience to random and malicious attacks.

Projeto Cientista Chefe de Dados – Economia Nota Fiscal Eletrônica

Generalized Modularity Algorithm Stochastic Block Model [Peixoto, PRE (2018)]

The algorithm identifies modules based on the correlations between pairs of sites and on the network generation process.

Infomap Algorithm Rosvall & Bergstrom, PNAS (2008)

- The algorithm finds modules in a network by minimizing the lengths of a random walker's movements.
- The network will be compacted if regions are identified where the walker tends to remain for a long time.
- It captures the network's optimal community structure in terms of its associated flow dynamics.

Matrix of Commercial Transactions

strong correlations within the communities!

Bipartite Networks of Cities and Traded Products Revealed Comparative Advantage (RCA) Index Hidalgo *et al.*, *Science* (2007)

 $q_m^p \rightarrow$ monetary value traded by the city *m* of the product *p*. $RCA_{m}^{p} =$ Selling **Buying** FORTALEZ Municipalities Municipalities JUAZEIRO DO NORTI UAZEIRO DO NORTI SOBRA SOBRA > III > | | | CRATEÚS CRATEÚS ≻ IV IV ACARA ACARA Products Products

From Correlations to "Interactions" Maximum-Entropy Model for Cities and their Traded Products

> Assuming that $\beta = 1$ and rewriting the equations as,

$$P(\vec{\sigma}) = Z^{-1} \exp(\sum_{m} h_m \sigma_m + \sum_{m < n} J_{mn} \sigma_m \sigma_n) \text{ and } Z = \sum_{\{\vec{\sigma}\}} \exp(\sum_{m} h_m \sigma_m + \sum_{m < n} J_{mn} \sigma_m \sigma_n)$$

the fields $\{h_m\}$ and couplings $\{J_{mn}\}$ can be obtained by solving,

$$\langle \sigma_m \rangle = \frac{\partial}{\partial h_m} \ln Z = \sum_{\{\vec{\sigma}\}} \sigma_m P(\vec{\sigma}) \quad \text{and} \quad \langle \sigma_m \sigma_n \rangle = \frac{\partial}{\partial J_{mn}} \ln Z = \sum_{\{\vec{\sigma}\}} \sigma_m \sigma_n P(\vec{\sigma})$$

Boltzmann Machine Learning

In practical terms, we search for a solution of this inverse-Ising problem using a Monte Carlo (MC) algorithm as a core solver with the following updating rules:

$$h_m(l+1) = h_m(l) - \eta(l)[\langle \sigma_m \rangle_{MC} - \langle \sigma_m \rangle_{obs}]$$
 (1)

$$J_{mn}(l+1) = J_{mn}(l) - \eta(l) [\langle \sigma_m \sigma_n \rangle_{MC} - \langle \sigma_m \sigma_n \rangle_{obs}]$$
 (2)

Once we infer all the parameters $\{h_m\}$ and $\{J_{mn}\}$ that better reproduce the sets $\{\langle \sigma_m \rangle_{obs}\}\$ and $\{\langle \sigma_m \sigma_n \rangle_{obs}\}\$, while maximizing the entropy, the Boltzmann distribution characterizes the statistics of the product activities of the cities composing a given community.

From Correlations to "Interactions"

Boltzmann Machine applied to the Microdynamics of Ceará's Economy

Muito obrigado!