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Further senses along which S,, or other entropic functionals,
would be unique are certainly welcome.
Constantino Tsallis in “Senses along Which the Entropy S, Is Unique”, 2023 Entropy 25, 743.
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OUTLINE

© Temperature, Heat, Entropy, that Obscure Objects of Desire
@ Maxwell-Juttner distribution (from Synge)
© de Sitterian material

Q Tsallis distribution as a A-deformation of the Maxwell-JUttner
distribution
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PREAMBLE :

Temperature, Heat, Entropy,
that Obscure Objects of Desire
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Preamble
[ Jele]e]

Entropy invariance and relativistic variance of temperature according to de Broglie (1948)

It is well known that entropy, alongside the
spacetime interval, electric charge, and
- - e mechanical action, is one of the
CAHIERS DE PHYSIQUE St - fundamental “invariants” of the theory of
. relativity. To convince oneself of this, it is
enough to recall that, according to
Boltzmann, the entropy of a macroscopic
state is proportional to the logarithm of
the number of microstates that realize
Vi e that state. To strengthen this reasoning,
B e ot one can argue that, on the one hand, the
definition of entropy involves a integer
number of microstates, and, on the other

SUR LA VARIANCE RELATIVISTE
DE LA TEMPERATURE

viste de Lo température
sur ses rapports avec un
de Tinvariance adialati

d,',v.i':zt;‘:;‘l'ﬁn’,‘l“!:i"g; ;’ll“g”l‘a\ (e hand, the transformation of entropy during

i|>mgrﬁ; de s rappelec quc, s¢lon Bolrzmain; Ventrogie d'un état macrostor a Galilean reference frame change must

pigue est proportionnelle au logrithme du_ nombe de complexions qui X X

LR e S S e be expressed as a continuous function of

part ladéfnition de entropie iitintecvenic un nombre enter decomplesions . .

ot nl'alnnbl}fznl}zr:l:sfu[:mmm;de\emfm’uc s e gt ! the relative Ve|oc|ty of the reference

S S i b s st & frames. Consequently, this continuous
o bl I vadance rlise de I tempéraue,des fsomencas ‘ function is necessarily constant and equal

plus délicts sonenécessaires. Nous développerons celui qui nous parait le | . h h th t t .

P mons un corps C i, envis s wn s de e o to unity, which means that entropy is

—i— constant.
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Preamble
[e] le]e]

“Relativistic thermodynamics” : what it could be

In relativistic thermodynamics (i.e., in accordance with special relativity) there are 3
points of view (see Wu, EPL 2009) !, distinguished from the way heat AQ and
temperature T transform under a Lorentz boost from frame R (e.g., laboratory) to
comoving frame R with velocity v = va relative to R and Lorentz factor

() = 1

@ Point of view (a) (Einstein, Planck, de Broglie ...), the covariant one,
AQ=AQyy™', T=Tyy'.
@ Point of view (b) (Ott, Arzelies, ...), the anti-covariant one,
AQ=AQyy, T=Tyv.
@ Point of view (c) (Landsberg, 1966, ...), “nothing changes”,
AQ=AQ,, T=T,.

@ Also note that for some authors (Landsbergh, Sewell, ...) “there is no meaningful
law of temperature under boosts”

1. Z. C. Wu, Inverse Temperature 4-vector in Special Relativity, 2009 EPL 88, 20005 7/28
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Preamble
[e]e] o]

Relativistic covariance of Temperature according to de Broglie (1948)

@ Consider a body B, its proper frame Ry, total proper mass M, in thermodynamical equilibrium
with temperature T, and fixed volume V; (e.g., a gas enclosed with surrounding rigid wall)

@ Then consider B from an inertial frame R in which B has constant velocity v = va relative to
RU.

@ Suppose that a source in R provides B with heat AQ. In order to keep the velocity v of B
constant a work W has to be done on B and the proper mass of the latter is consequently
modified My — Mé. Then, from energy conservation :

1

Y= = ioa

(M — Mo)ye® = AQ+ W,

and relativistic 2d Newton law
AP:M(;’Y\/*MU"/V:/Fdl: %/det: %
we derive )
AQ = %'y_zW = (M(') - M(])czfy_2

@ In the frame R, there is no work done (volume is constant), there is just transmitted heat
AQy = (M} — Mo)c*.

@ Hence heat transforms as
-1
AQ = AQyy
and since the entropy S = [ % is relativistic invariant, S = S, temperature transforms as
T =Ty

J.-P. Gazeau Tsallis 80th Birthday 04/11 -10/11 2023
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Maxwell-duttner distribution
(from Synge)
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Maxwell-Jiittner distribution
®000000

Derivation for simple gases (Synge)-|

@ Notations for Minkowskian event and 4-momenta 4-vectors,

M 3 Bgz(x“):(x[):xo,xizfxi, i:l,2,3)£(x07x),x-i:x x;L:xx —x X,

k== (k") = (K",k).
@ Let k be a 4-momentum pointing toward A € mass shell hyperboloid VI = {k, k- k = m*¢*},

and an infinitesimal hyperbolic interval at A, with length do = mc dw (dw = d;—k is the

S

Lorentz-invariant element on V;1),
@ given a time-like unit vector n,
@ given a straight line A passing through the origin and orthogonal (in M, 3 sense) to n,
@ denote by d©2 the length of the projection of do on A along n. One proves that

dQ = |k nldw (= d’kifn = (1,0))

ol su Iy

Fig. 1. - is a time-like unit vector, 4 is a straight line passing through the
origin and orthogonal (in the Minkowski metric) to %. The 2-vector k= (ko, k)
points towards a point A of the mass shell hyperbola 0y, = {kl|kf — k%=
m?*c?}. dQ is the length of the projection of an infinitesimal hyperbolic 10/28
interval at A of length mede
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Maxwell-Jiittner distribution
O@00000

Derivation for simple gases (Synge)-I|

@ The sample population consists of those particles with world lines cutting the infinitesimal
space-like segment dX orthogonal to the time-like unit vector n.

@ Every particle that crosses the portion C of the null cone between M and d> must (causal
cone) also cross dX. Therefore the following population number is preassigned

v =dx / N (x, k) dQ
R

where N (x, k) is the distribution function, and R the region delimited by M and dX.

@ By the conservation of 4-momentum at each collision in a simple gas, the flux of 4-momentum
across dX is predetermined as the flux across C,

T, -nds :dE/ N (x, k) ck,,dQ2
R

where T = (T,,, ) is the energy tensor.
n

dx

M= (x°,x)
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Maxwell-Jiittner distribution
[e]e] lele]e]e)

Derivation for simple gases (Synge)-llI

@ The most probable distribution function A" at M is that which maximizes the
following entropy integral

F:—dE/ N log A dQ
R

@ Variational calculus with constraints on v and T}, - n leads to the solution
N(x,k) = C(x) exp(—n(x) - k)

@ Scalar C and 4-vector 7 (dimension of inverse momentum) are connected with
Lagrange multipliers and determined by the constraints on v = N - nd¥ ( N is the
numerical-flux 4-vector) and T, - ndX :

c/ kpe T%dw =N, c/ ckuky et dw =T, .
Vit Vil
established by taking into account that » is arbitrary.
@ With the equations of conservation
9-N=0, 90-T,=0,

we finally get as many equations as functions of x : C,n, N, T.
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Maxwell-Jiittner distribution
[e]e]e] le]ele)

Derivation for simple gases (Synge)-IV

@ For instance, if we deal with a simple gas consisting of material particles of proper mass m,
we introduce the mean 4-velocity of the fluid, A = (A, = en./ /1 1), A=A = ¢?, so that

. No _Ak
N(x,k) = mexp( kTT) '

@ 7, :=c/(kp,/m - n) is a “relativistic” absolute temperature (a relativistic invariant).
@ The appearance of the Bessel functions K; comes from the constraint
% Pk oz Nypme

NL:C/ kye 1t — =-C =C Kl(mc 77-77),
! v ko ot VI -

where Z = [ e~k d%ok =Ko (mc /7 77) is the partition function.

@ The invariant quantity ANy = N - A/c is the number of particles per unit length (“numerical
density”) in the rest frame of the fluid (Ay = ¢).

@ Note that the Maxwell-Boltzmann non relativistic distribution is recovered by considering the
limit at k3T, < mc? in the rest frame of the fluid :

2 _ mc?
X me ~ /7rkBTue 15Ta
kgT, 2mc?
2 koc — mc? [ 2 K>
= N(x, k) ® Noy| —— e - | &Ny ———exp | ——— | .
k) 0 mkpTy, Xp( kpT, > 0 mkpTy, p( 2mkgT,

J.-P. Gazeau Tsallis 80th Birthday 04/11 -10/11 2023

13/28



Maxwell-Jiittner distribution
0O000e00

Inverse temperature 4-vector

@ The found distribution on the Minkowskian mass shell for a simple gas consisting
of particles of proper mass m

B No Ak
Nk = Ty P Cﬁ)

leads us to introduce the relativistic thermodynamic, future directed, time-like
4-coldness vector 3, as the 4-version of the reciprocal of the thermodynamic
temperature (see also Wu 2009) :

A )
= =p5=(8"=5)>0,8 =-8)= (5,8,

kBTu
JBB=—=8
P 7_kBTa_ a -

@ ltis precisely the way as the component g, transforms under a Lorentz boost,
By =~v()(Bo — v - B/c), which explains the way the temperature transforms a la
de Broglie, T +— T’ = Ty~ 1.

@ So, in the sequel, we call Maxwell-Juttner distribution the following relativistic
invariant :

with relativistic invariant

No
R
mcKy (mcBq) =

J.-P. Gazeau Tsallis 80th Birthday 04/11 -10/11 2023
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Maxwell-Jiittner distribution
000000

Maxwell-Juttner distribution in a nutshell

» Distribution

No
k) =
Nk mcK; (mc? [kgT,)
« Momentum 4-vector
k=K, k) eV, k-k=m’

» Coldness 4-vector field ~ 4-version of the
reciprocal of the thermodynamic temperature
in terms of the mean 4-velocity )\ of the fluid

A
B=(6>00) =35, E-E=pr

J.-P. Gazeau Tsallis 80th Birthday 04/11 -10/11 2023
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Maxwell-Jiittner distribution
0O00000e

de Sitterian material
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de Sitter material
®000000

de Sitter geometry

» de Sitter space is viewed as a hyperboloid embedded in a five-dimensional Minkowski space
M 4 with metric g3 =diag(1l, —1, —1, —1, —1) (but keep in mind that all points are
physically equivalent)

MRE{XERS;xzzgagxaxﬁ:7R2}, a,B3=0,1,2,3,4,
3
where the pseudo-radius R (or inverse of curvature) is given by R = 4/ x within the

cosmological ACDM standard model.
» de Sitter symmetry group is SOy (1, 4) with ten (Killing) generators K3 = x93 — x30+.

de Sitter space-time
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de Sitter material
O@00000

Flat Minkowskian limit of de Sitter geometry

» Example of global coordinates on Mg, ¢t € R,n € S?,r/R € [0, 7] :
Mg > x= (xo,xl,x2,x3,x4) = (xo,x,x4)
= (Rsinh(ct/R), R cosh(ct/R) sin(r/R)n, R cosh(ct/R) cos(r/R)) = x(t,X) .

do Sitr

> limg_.oo Mg = M 3, the Minkowski spacetime tangent to My, at, say, the de Sitter
origin point O4s = (0, 0, R), since then

MR3X ~ (Ctyr:rn7R)E(£7R)» EEMIJ
R— o0

» limg_, o0 SOp(1,4) = 731(1,3) = M 3 x SO¢(1, 3), the Poincaré group.

» The ten de Sitter Killing generators contract (in the Wigner-Inonii sense) to their
Poincaré counterparts K., IT,, p = 0, 1,2, 3, after rescaling the four
K‘W — H,,L = K4H/R.
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de Sitter material
[e]e] le]elele)

de Sitter plane waves as binomial deformations of Minkowskian plane waves

» de Sitter (scalar) plane waves have the form

re(x) = <%>T , xXeEMg, £€Cig,

where C, 4 = {€ € R, £ - & = 0} is the null cone in M, 4.
» They are solutions of the Klein-Gordon-like equation

1

FMasM*PGr e (x) = R'Opbr ¢ (x) = 7(7 +3)dr e (1),
where M, 3 = —i (x93 — x50~ ) is the quantum representation of the Killing K5, and Og
stands for the d’Alembertian operator on M.

» ForrT = —% +iv, v € R, they describe free quantum motions of “massive” scalar particles on
MR.

» The term “massive” is justified by the flat Minkowskian limit R — oo, i.e. A — 0:

o First one has the Garidi relation between proper mass m (curvature independent) of the
particle and the parameter v > 0

h |: 2L l] 1/2 - R2m2c?2 1 Rmc  mc |3
m=— v+ - v = —— o — = —/
Re 4 h? 4 Rlage h h A

(the quantity Z¢- is a kind of at rest desitterian energy, which is distinct of the proper
mass energy mc* if A # 0).

o Then with the mass shell parametrisation £ = (50 - N W l) ecl,:

brex) = (- /R o KL= (o).

— 0o
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de Sitter material
[e]e]e] lelele)

Analytic extension of dS plane waves for dS QFT

» Actually dS plane waves ¢, ¢(x) = (%)T T = —3/2 + iv, are not defined on all
Mg due to the possible change of sign of x - &.
» A solution is found through extension to tubular domains in complexified Mg,

T =TENMg, TF:=M4+ivE,

where the forward and backward light cones V+ := {x € My 4, x° = /%% + (%)}
allow for a causal ordering in M 4.

» Then the extended plane waves ¢, (x) = (%)T are globally defined for z € T+
and ¢ € ¢,

» These analytic extensions allow for a consistent QFT for free scalar fields on Mg, :
the two-point Wightman function W, (x, x') = (2, ¢(x)¢(x’)2) can be extended to

the complex covariant, maximally analytic, two-point function having the spectral
representation in terms of these extended plane waves :

Wy (z,7) = cy/ (z-&)73/ v (g . )y=3/27w dk ., z€T ™, eTt.
Vo, ko
» Details are found in J. Bros, J.P. G., and U. Moschella, Quantum Field Theory in

the de Sitter Universe, 1994 Phys. Rev. Lett. 73 1746-1749. See references in M.
Enayati, J.P. G., H. Pejhan, and A. Wang, The de Sitter (dS) Group and its
Representations ; An Introduction to Elementary Systems and Modeling the Dark
Energy Universe, Springer Nature (2022)..

J.-P. Gazeau Tsallis 80th Birthday 04/11 -10/11 2023
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de Sitter material
[e]e]ele] lele)

KMS interpretation of W,, (z, z') analyticity

» For the analyticity of W, (z,z') we deduce that W, (x, ") defines a 2inR/c periodic
analytic function of 7, whose domain is the periodic cut plane

Cy ={re C,Im(r) # 2nwR/c, n € Z} U{t, t = 2intR/c € Ly v nez}
where I, ./ is the real interval on which (x — x’)? < 0.
» Hence W, (z,7’) is analytic in the strip
{te C, 0<Im(t) <2inR/c},
and satisfies :

Wy (X' (t+1,x),x) = lim W, (x,x'(t+1 +2irR/c —ie,x), ' €R.
e—0t
» This is a KMS relation at (~ Hawking) temperature

- hc n he A
AT kR T 2nkp V3

T
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de Sitter material
0000080

de Sitter (dS) plane waves in a nutshell

e dS (scalar) plane waves for “massive” scalar particles on dS
manifold Mz = {x =(xx"), xx=x-x—(*)?=-R=— (%)2}

% é. 3/2—iv
Prelx) = (T) , x=(xx") EMg C My

e de Sitterian “momentum” on the null cone
Cla={¢eR, - £=0}inM;4

= <§= £7£4: 1) €Cia
me

e 3+ 1 Minkowskian limitat R — oo (i.e. A — 0)

i 2
(e /R o kYR = (ot,1), u=mfc\/% =

RS0 " 2mkpTy
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Tsallis distribution as a A-deformation of
the Maxwell-JUttner distribution
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de Sitterian Tsallis distribution
[ Jelelele}

Coldness in de Sitter

@ In analogy with the de Sitter plane waves, let us introduce the distributions on subset
~vrcet, ={6eMia, £-6=0,8>0}:

. T 0
bre(x) = <5> , beMg, ¢= <k— >0,£,71) ,
B mc mc

where one should note the negative value —1 for &, and
Mp={b €My, b>=g.3 b°6° = —B*}, «,8=0,1,2,3,4,is the manifold of the
“deSitterian coldnesses”.

@ Like for Mg we use global coordinates on Mg : 8 € R, 8 = ||b||n € R*, ||, ||6]|/B € [0, 7],
with

Mz > b = (6% 6", 0%, 6%, 6%) = (8°, b, b%)
= (Bsinh(8°/B), Boosh(8°/B) sin([|B||/B)n, B cosh(5°/B) cos(|811/B) ) = b(8) ,
@ in such a way that at large B we recover the Minkowskian coldness £ :

Mg>b =~ (B,B).
B—oo —

@ We now need to connect the desitterian coldness scale B with A. Inspired by relativistic

27rAB A / we write

27 3 X n _ _
TV e B:hﬁ, Acurrent = 1.1056x 10”2 m ™2

where n is a numerical factor. B ~ 0.9 x 10%° n Sl is the inverse of a momentum.

invariant 3, = vm T and the KMS temperature Th =

B h = 1.054571817...x 10" Ts
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de Sitterian Tsallis distribution
[¢] lele]e}

A de Sitterian Tsallis distribution

n_ .

' T b o
@ Now consider the distribution on Mg x V," with B = -

—mcB
bf —mcB bO kO bk b4

N(b,k) =Cp | — —cp | 2 - 22 4 )
(6, &) B(B) B(Bmc Bmc+B

where Mg = {b € M 4, b> = go53 6%0° = —B*}, «,B8=0,1,2,3,4, is the manifold of
the “deSitterian coldnesses”, and constant Cz involves Legendre function of mc? /ksT, (?1).
@ With global coordinates
Mz 5 b = (Bsinh(8°/B), Bcosh(8'/B) sin(||8I/B)n, ~B cosh(8°/B) cos(|1BI|/B))
with the constraint 8°/B € [0, w/2), N'(b, k) reads
ko n- —mcB
N(b,k) = Cy <cosh(B°/B) cos([1BI/B) + sinh(8"/B) — — cosh(5"/B) sin(l\ﬁ\l/B)W>

[ e to (cosn(8/5) cos 181l /m+sinh (80 /8) K —cosn(8/m) sin(l81/m) 25 )|
e

= Cgexp [—ch log (cosh(,@o/B) cos(||ﬁ|\/3))} x

X exp —mcBlog |1+ sinh(B°/B) f,T(l — cosh(8°/B) sin([|8l/B) 5:¥
p g cosh(B°/B) cos(||B|/B)

25/28
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de Sitterian Tsallis distribution
[e]e] lele}

A de Sitterian Tsallis distribution

@ At large B this expression becomes the Maxwell-JUttner distribution :
N (b,k) ~ Cpe 2%

@ So, going back to the original expression

b- —mcB b() kO b K b4 —mcB
N(h,k)ZCB(Yg) =CB(*f—E-f+f)

B mc

b4 —mcB bk —mcB
=Cz (— 1+ == . b= (0% 0).
i (B) ( * b4mc> b= ( )

1
=14+ —=1+ ,
q mcB men

@ Introducing

we get the Tsallis-type distribution

N = (1= -ager)
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de Sitterian Tsallis distribution
[e]e]e] lo}

de Sitterian Tsallis distribution in a nutshell

e de Sitterian coldness manifold with B = n : numerical,

hf’

MBBB:(bO,b,b4)7 b'b:(bo)z_b‘b_(b4)2:—32

e de Sitterian distribution on My x Vi

—mcB 0
N(6,K) = cB(h 5) , §:<"—>0,5,—1>
B mc mc

e de Sitterian Tsallis-type distribution

B =a
N0 = o (1-(1- )b -£)
o With
1 v A
mcB men
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de Sitterian Tsallis distribution
[e]e]e]e] }

THANK FOR YOUR INDULGENT ATTENTION AND

Ta kaAvtepa yeveBALa Kwvotavtivo!
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