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Introduction
• Fourier’s law [1] describes the heat diffusion rate

through a macroscopic material in the direction of
the flow (J ∝ −∇T );

• In this work two types of anisotropic planar rotators
are studied through molecular dynamics;

• We approach, for a linear chain, the Ising limit via
two different types of extremely anisotropic XY mod-
els (local and in the coupling), which allowed us to
evaluate the validity of the Fourier’s law;

• Furthermore, we better characterized the conductivity
change for a more extended range of temperatures,
resulting in the q-stretched exponential [2] instead of
the q-Gaussian distribution [3] .

Models
• The Hamiltonians of the local and anisotropic cou-

pling models are, respectively, given by
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[1+ϵa−cos(θi−θj)−ϵa cos(θi+θj)] .

(2)
where ϵl ∈ [0,∞) and ϵa ∈ [−1, 1];

• ϵa = ±1 correspond to the Ising model along the y
and x axes respectively, whereas ϵa = 0 recovers the
standard isotropic XY -model (see Fig. 1);

• We have considered unit momenta of inertia and unit
first-neighbor coupling constant;
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Figure 1: Schematic representation of the anisotropic XY

coupling.

Methods
• The dynamical evolution were conducted using

Velocity-Verlet algorithm [4] with step size dt =

0.01;
• The transient time : 1010 (108 time units) ;
• After transient the average of the heat flux is realized

for 4 × 108 time steps (4 × 106 time units) ;
• We set Th/l = T(1 ± ∆) with ∆ = 0.125, where T

is the average temperature ;
• The average is taken over 80 experiments (80 × 4 ×
108 time steps);

• The macroscopic conductivity κ is given by κ =
J

(Th−Tl)/L
where J = ⟨Ji⟩ ;

• The Lagrangian fluxes for local and anisotropic cou-
pling are Ji =

1
2
(pi + pi+1) sin(θi − θi+1) and Ji =

pi+pi+1

2
sin(θi − θi+1) + ϵa

pi−pi+1

2
sin(θi + θi+1), re-

spectively.

Results

• The present numerics at a wider range of T are pro-
portional to stretched q-exponential whose definition
y(x) = e−B|x|η

q with q ≥ 1, η > 0 and B > 0. The
q-Gaussian [5] form is recovered as the η = 2 partic-
ular limit;

• Consistently with this Ansatz, we verify that, in
the thermodynamic limit (L ≫ 1), σ(ϵl, T) ∝
σ(ϵa, T) ∝ T− η

q−1, where (η, q) ≈ (1.94, 1.65) thus
yielding the slope η/(q − 1) ≈ 3.0 (see Figs. 2 and
3 ).
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Figure 2: Left: Thermal conductance of the first
anisotropic model as a function of temperature for one-
dimensional lattice structure and the local coupling con-
stant for L = 50. Center: Plot of -slope versus ϵl for
L = 20, 35, 50. All the curves approach the same sat-
uration value slopel ≃ −3.0. Right: Collapse with a
stretched q-exponential form, from ϵl = 0.4 to ϵl = 0.7

with L = 20, 35, 50. The values of the minimum (Tmin)
and maximum (Tmax) temperatures are 0.03 and 8.0 re-
spectively.
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Figure 3: Left: Thermal conductance of the second
anisotropic model as a function of temperature for one-
dimensional lattice structure and the local coupling con-
stant for L = 50. Center: Plot of -slope versus ϵa for
L = 20, 35, 50. All the curves approach the same sat-
uration value slopea ≃ −3.0. Right: Collapse with a
stretched q-exponential form, for ϵa = 0.6 and ϵa = 0.7

with L = 20, 35, 50. The values of the minimum (Tmin)
and maximum (Tmax) temperatures are 0.03 and 8.0 re-
spectively.

Conclusion
• Fourier’s law is microscopically shown to be satisfied

for the two types of anisotropic XY-models;
• A closed formula is obtained for the thermal conduc-

tivity for finite lattice sizes at arbitrary temperatures;
• In the limit of extreme anisotropy, both models ap-

proach the Ising model and its thermal conductivity
κ, which, at high temperatures, scales like κ ∼ T−3;

• This behavior reinforces the result obtained in various
d-dimensional models, namely κ ∝ L e−B(LγT)η

q where
ezq ≡ [1+ (1− q)z]

1
1−q (ez1 = ez), L being the linear

size of the d-dimensional macroscopic lattice;
• The scaling law ηγ

q−1
= 1 guarantees the validity of

Fourier’s law, for all dimensions.
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