Scaling laws in the $\alpha\text{-}XY$ model

Antonio Rodríguez Mesas

STATISTICAL MECHANHICS FOR COMPLEXITY A CELEBRATION OF THE 80TH BIRTHDAY OF CONSTANTINO TSALLIS Rio de Janeiro, 6 to 10 november 2023

F.O.Tstallise

L. Boltzmann

Let's go for 90, Constantino!

Outline

- HMF model
- α –XY model
 - Scaling of $t_{\rm QSS}$ with N and α/d
 - Scaling of $t_{\rm QSS}$ with $U_{\rm c}$ -U
- Ongoing work

• *N* planar rotators

- Spin of rotator i: $\vec{m}_i = (\cos \theta_i, \, \sin \theta_i)$
- Total magnetization: $\vec{M} = \frac{1}{N} \sum_{i=1}^{N} \vec{m}_i$
- $\epsilon > 0$: ferro; $\epsilon < 0$: antiferro

• *N* planar rotators

• *N* planar rotators

• Equation of state: $U = \frac{T}{2} + \frac{\epsilon}{2}(1 - M^2)$

• *N* planar rotators

- Equation of state: $U = \frac{T}{2} + \frac{\epsilon}{2}(1 M^2)$
- Equations of motion:

$$\begin{split} \dot{\theta}_i &= \frac{\partial H}{\partial p_i} = p_i \\ \dot{p}_i &= -\frac{\partial H}{\partial \theta_i} = -\frac{\epsilon}{N} \sum_{j=1}^N \operatorname{sen}\left(\theta_i - \theta_j\right) = \epsilon \, \vec{m}_i \times \vec{M} \end{split}$$

• *N* planar rotators

quasistationary state

• *N* planar rotators

quasistationary state

Outline

- HMF model
- α –XY model
 - Scaling of $t_{\rm QSS}$ with N and α/d
 - Scaling of $t_{\rm QSS}$ with $U_{\rm c}$ -U
- Ongoing work

 α –XY model

$$\mathcal{H} = K + V = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \frac{\epsilon}{2\tilde{N}} \sum_{i\neq j}^{N} \frac{1 - \cos(\theta_i - \theta_j)}{r_{ij}^{\alpha}}$$

C. Anteneodo & C. Tsallis, PRL 80, 5313 (1998)

 α –XY model

$$\mathcal{H} = K + V = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \frac{\epsilon}{2\tilde{N}} \sum_{i \neq j}^{N} \frac{1 - \cos(\theta_i - \theta_j)}{r_{ij}^{\alpha}}$$

$$\tilde{N} = 1 + d \int_{1}^{N^{1/d}} \frac{r^{d-1}}{r^{\alpha}} \mathrm{d}r = \frac{N^{1-\alpha/d} - \alpha/d}{1-\alpha/d} \sim \begin{cases} \frac{N^{1-\alpha/d}}{1-\alpha/d}; & 0 \leq \alpha/d < 1\\ 1 + \ln N; & \alpha = d\\ \frac{\alpha/d}{\alpha/d-1}; & \alpha/d > 1 \end{cases}$$

- short range: $\alpha/d > 1$ $\widetilde{N} \to \text{const}$ $\alpha \to \infty$ NN
- long range: $\alpha/d \leq 1$ \widetilde{N} diverges $\alpha = 0$ HMF

C. Anteneodo & C. Tsallis, PRL 80, 5313 (1998)

α –XY model

$$\mathcal{H} = K + V = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \frac{\epsilon}{2\tilde{N}} \sum_{i \neq j}^{N} \frac{1 - \cos(\theta_i - \theta_j)}{r_{ij}^{\alpha}}$$

• caloric curve

α –XY model

$$\mathcal{H} = K + V = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + \frac{\epsilon}{2\tilde{N}} \sum_{i \neq j}^{N} \frac{1 - \cos(\theta_i - \theta_j)}{r_{ij}^{\alpha}}$$

• Time-averaged momenta pdf:

 $\alpha/d = 0.9$

L. J. Cirto, A. Rodríguez, F. D. Nobre & C. Tsallis, EPL 123, 30003 (2018)

Outline

- HMF model
- α –XY model
 - Scaling of $t_{\rm QSS}$ with N and α/d
 - Scaling of $t_{\rm QSS}$ with $U_{\rm c}$ -U
- Ongoing work

Scaling of t_{QSS} with N

• t_{QSS} increases with N and with d; $t_{QSS}(M(0) \sim 0) > t_{QSS}(M(0) = 1)$

 $U = 0.69, \ \alpha/d = 0.9$

- system size: N = L^d
- $\begin{aligned} 5^6 &= 15625 = 125^2 = 25^3 \\ 6^6 &= 46656 = 216^2 = 36^3 \\ 7^6 &= 117649 = 343^2 = 49^3 \\ 8^6 &= 262144 = 512^2 = 64^3 \\ 9^6 &= 531441 = 729^2 = 81^3 \\ 10^6 &= 1000000 = 1000^2 = 100^3 \end{aligned}$
- Initial conditions $M(0) = 1: \ \theta_i = 0 \forall i$ $M(0) \sim 0: \ \theta_i \in [0, 2\pi]$

Scaling of t_{QSS} with N

• t_{QSS} increases with N and with d: $t_{QSS} = d^{\rho} \mu(\alpha/d) N^{A(\alpha/d)}$

Scaling of t_{QSS} with N

• t_{QSS} increases with N and with d: $t_{QSS} = d^{\rho} \mu(\alpha/d) N^{A(\alpha/d)}$

Scaling of t_{QSS} with α/d

• t_{QSS} decreases with α/d

U = 0.69, N = 15625

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 103, 042110 (2021)

Scaling of t_{QSS} with α/d

• t_{QSS} decreases with α/d : $t_{QSS} = d^{\rho} \nu(N) \exp[-B(N)(\alpha/d)^2]$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 103, 042110 (2021)

Scaling of t_{QSS} with α/d

• t_{QSS} decreases with α/d : $t_{QSS} = d^{\rho} \nu(N) \exp[-B(N)(\alpha/d)^2]$

U = 0.69, N = 156250.50 $t_{\rm QSS} = d^{\rho} \mathbf{v}(N) e^{-B(N)(\alpha/d)^2}$ d = 0.10.48 -0.46= 0.8 $\alpha/d = 0.9$ $T^{0.44}$ d = 1, 2, 3N = 156250.42 -0.40 -0.38 -10-1 10⁰ 10 $t/t_{\rm QSS}$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE **103**, 042110 (2021)

Scaling of t_{OSS} with α/d and N

- t_{QSS} decreases with α/d : $t_{\text{QSS}} = \frac{d^{\rho_{\text{ev}}(N)} \cos \left[-\frac{D(N)(\omega/d)^2}{t_{\text{QSS}}(N, \alpha, d)} \propto N^{A(\alpha/d)} e^{-B(N)(\alpha/d)^2}\right]}{t_{\text{QSS}} = a^{-\mu_{\text{ev}}(\alpha/d)} e^{-B(N)(\alpha/d)^2}}$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 103, 042110 (2021)

Outline

- HMF model
- α –XY model
 - Scaling of t_{QSS} with N and α/d
 - Scaling of $t_{\rm QSS}$ with $U_{\rm c}$ -U
- Ongoing work

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with U_c -U and d: $t_{\text{QSS}} \propto (U_c - U)^{-\xi}$ $(U_c = 3/4, \xi \simeq 1.67)$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with U_c -U and d: $t_{QSS} \propto (U_c - U)^{-\xi}$ $(U_c = 3/4, \xi \simeq 1.67)$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with U_c -U and d: $t_{\text{QSS}} \propto (U_c - U)^{-\xi}$ $(U_c = 3/4, \xi \simeq 1.67)$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with U_c -U and d: $t_{QSS} \propto (U_c - U)^{-\xi}$ $(U_c = 3/4, \xi \simeq 1.67)$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE **104**, 014144 (2021)

• t_{QSS} increases with U_c -U and N: $t_{QSS} = d^{\rho} \mu(\alpha/d) N^{A(\alpha/d)} \epsilon^{-\xi}$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with U_c -U and d: $t_{\text{QSS}} \propto (U_c - U)^{-\xi}$ $(U_c = 3/4, \xi \simeq 1.67)$

 $\alpha/d = 0.9, N = 46656$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with U_c -U and d: $t_{\text{QSS}} \propto (U_c - U)^{-\xi}$ $(U_c = 3/4, \xi \simeq 1.67)$

 $\alpha/d = 0.8, N = 46656$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with U_c -U and d: $t_{QSS} \propto (U_c - U)^{-\xi}$ $(U_c = 3/4, \xi \simeq 1.67)$

 $\alpha/d = 0.7, N = 46656$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

• t_{QSS} increases with $U_c - U$ and α/d : $t_{QSS} = d^{\rho} v(N) \exp[-B(N)(\alpha/d)^2] \epsilon^{-\xi}$

N = 46656

- t_{QSS} increases with $U_c U$ and α/d : $t_{QSS} = d^{\rho} v(N) \exp[-B(N)(\alpha/d)^2] e^{-\xi}$
- t_{QSS} increases with U_c -U and N: $t_{QSS} = d^{\rho} \mu(\alpha/d) N^{A(\alpha/d)} \epsilon^{-\xi}$

A. Rodríguez, F. D. Nobre & C. Tsallis, PRE 104, 014144 (2021)

Outline

- HMF model
- α –XY model
 - Scaling of t_{QSS} with N and α/d
 - Scaling of t_{QSS} with U_c -U
- Ongoing work

Anomalous diffusion

 α -XY, *N* = 46656, *U* = 0.69, α = 0.9, *d* = 1

N = 46656, $\alpha/d = 0.9$, U = 0.69, NAV = 1

Anomalous diffusion

 $\alpha/d = 0.9, U = 0.69, \gamma = 0.909$

