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1. Introduction

The development of algebras aimed at quantum systems
emerged in an approach to one-dimensional integrable
quantum models using Bethe’s algebraic ansatz. Then,
the construction of different algebras was relevant to ad-
dress a large class of physical phenomena. When the al-
gebra is associated with the harmonic oscillator, it is cal-
led Heisenberg algebra and is presented in terms of the
creation and annihilation operators. Its generalization (q-
oscillators) was implemented through the group suq(2) in
the Jordan-Schwinger method, which is a deformed version
of the group su(2). In this context, the generalized Heisen-
berg algebra (GHA) was forged in early 2000 [1,2]. It con-
sists of a Heisenberg-type algebra that relies on an arbitrary
function f. This function depends on the dimensionless Ha-
miltonian, and it is carefully chosen to correspond to the
desired quantum system. Therefore, it is possible to unco-
ver ladder operators and construct coherent states for se-
veral quantum systems. The main purpose of this work is to
develop a generalized Heisenberg algebra for quantum bil-
liards. Henceforth, we depict a subspace of Hamiltonian’s
eigenfunction via GHA. We find the position representation
of the ladder operators, coherent states, and the respective
time evolution.

2. GHA

The GHA is generated by the operators Ĥ, Â, Â† satisfying

ĤÂ† = Â†f (Ĥ) (1)
ÂĤ = f (Ĥ)Â (2)[

Â, Â†
]
= f (Ĥ)− Ĥ, (3)

where Â = (Â†)† and the Hamiltonian is hermirtian. Along
these lines, we set the general vector |l,m⟩ (which is an
eigenstate of the Hamiltonian) to depict the Fock space n-
dimensional representation theory. Therefore

Ĥ|l,m⟩ = ϵl,m|l,m⟩, (4)

where m and l are quantum numbers, ϵl,m is the energy ei-
genvalue. It is worth mentioning that each state can be writ-
ten as a tensor product of two Fock spaces |l⟩ = |l⟩ ⊗ |m⟩.
We construct an algebra for each quantum number l. The-
refore, for each algebra, we define the characteristic func-
tion as fl, and f

(m)
l (ϵl,1) = ϵl,m, where f

(m)
l is the m-th ite-

rate of ϵl,1. Hence, the operators Âl and Â†
l are defined for

each specific l, and its action on a general vector is

Â
†
l |l,m⟩ = Nl,m|l,m + 1⟩ (5)
Âl|l,m⟩ = Nl,m−1|l,m− 1⟩, (6)

where N2
l,m = ϵl,m+1 − ϵl,1.

These generalized Heisenberg algebras describe several
classes of quantum systems. It was presented in [?] that
the class is characterized by quantum systems with the fol-
lowing relation

ϵl,m+1 = fl(ϵl,m), (7)

where both ϵ are consecutive eigenvalues, fl is the charac-
teristic function in eq. (3), and Âl and Â†

l are the annihilation
and creation operators.

3. Coherent states

The GHA formulation provides an explicit form to obtain
Klauder-type coherent states [3]

Âl|z, l⟩ = z|z, l⟩, (8)

where z is a complex number. Thus, one can expand
|z, l⟩ =

∑∞
m=1 cl,m|l,m⟩, and perform the action of the an-

nihilation operator together with the eq. (6) and (8)

Âl|z, l⟩ =
∞∑
m=1

cl,m+1Nl,m|l,m⟩ = z

∞∑
m=1

cl,m|l,m⟩, (9)

therefore, the coefficients cl,m is obtained via

cl,m = cl,1
zm

Nl,m−1!
, (10)

where Nl,m! = Nl,1Nl,2 . . . Nl,m. Defining Nl(z) = cl,1 and
Nl,0! = 1 for consistency, one can write the coherent states
as

|z, l⟩ = Nl(|z|)
∞∑
m=1

zm

Nl,m−1!
|l,m⟩. (11)

The Klauder’s coherent states are obtained by the minimal
set of conditions, which are the normalizability ⟨z|z⟩ = 1,
continuity in the label

|z − z′| −→ 0, ∥|z⟩ − |z′⟩∥ −→ 0, (12)

and completeness

|l⟩⟨l| ⊗ Îm =

∫
d2zω(z)|z, l⟩⟨z, l|, (13)

where ω(z) is a weight function, and in the left hand side of
eq.13 Îm =

∑
m |m⟩⟨m| is the identity operator. In this con-

text, it is possible to construct coherent states belonging
to a subset of all the eigenstates. From the normalizability
condition, one can obtain

Nl(|z|) =

 ∞∑
m=1

|z|2m

N2
l,m−1!

−1/2

, (14)

and from the completeness condition, it is possible to find
the weight function ω(z), for given spectra. We can show
the characteristic function of the algebra and construct the
coherent states with one of the quantum numbers l cons-
tant. We will consider the eigenvalues written as a second-
order polynomial ϵl,m = am2 + bm + c, where a, b, and c
depends of l.

4. Quantum Billiards

Quantum billiards refer to the study of quantum mechanical
systems where a particle is confined within a bounded re-
gion. We select three representative cases: the square bil-
liard, the circular billiard, and the equilateral triangle. Both
square and circular billiards are defined as separable bil-
liards. The meaning behind this classification is that their
eigenstates can be found via the separation of variables
method. The equilateral triangle is an example of a nonse-
parable billiard. Also, a second-order polynomial gives the
eigenvalues of the square and the equilateral billiard. On
the other hand, the circular billiard eigenvalues do not obey
this specific function. However, we can treat it as a second-
order polynomial via a suitable approximation. Along these
lines, we determine the algebra generators and their posi-
tion representation, we construct coherent states, and ve-
rify their quantum time revival.

4.1 Square Billiard
The dynamics of a particle confined in a rectangular billiard
are governed by the Schrodinger equation with the potential

V (r) =

{
0 0 < x < Lx and 0 < y < Ly

∞ otherwise
, (15)

therefore the particle can not be found outside of the rectan-
gle of sides Lx and Ly. Following the separation of variables
method, one can find the energy eigenvalues

ϵl,m =
ℏ2π2

2µ

(
l2

L2x
+
m2

L2y

)
, (16)

where l,m = 1, 2, 3... associated with the eigenfunctions

ψl,m(r) =
2√
LxLy

sin

(
lπx

Lx

)
sin

(
mπy

Ly

)
. (17)

Setting ℏ = 2µ = Lx = Ly = 1, we depict the square billi-
ard. In this context, we associate the eigenfunction ψl,m in
the Hilbert space with each state |l,m⟩ in Fock state space.
Then, one can easily see that the characteristic function is

fl(ϵl,m) = π2 + ϵl,m +
√

4π2ϵl,m − 4l2π4. (18)

Hence, the action of the algebra generators are

Ĥ|l,m⟩ = π2(l2 +m2)|l,m⟩, (19)
Â
†
l |l,m⟩ = π

√
m(m + 2)|l,m + 1⟩, (20)

Âl|l,m⟩ = π
√
m2 − 1|l,m− 1⟩, (21)

with ladder operators in the position representation

Â
†
lψl,m(r) =

[
g1(y)

d

dy
+ g2(y)ρ(N̂)

]
τ (N̂)ψl,m(r) = Nl,mψl,m+1(r),

(22)

where

g1(y) = sin(πy) (23)
g2(y) = cos(πy) (24)
ρ(N̂) = N̂π (25)

τ (N̂) =

√
N̂(N̂ + 2)

N̂
, (26)

and

Âl = τ (N̂)

[
− d

dy
g1(y) + ρ(N̂)g2(y)

]
, (27)

and N̂ is the number operator. So, it yields the commutation
relations [

Ĥ, Â
†
l

]
= Â

†
l

(
π2Î + 2π

√
Ĥ − l2π2

)
(28)[

Ĥ, Âl

]
= −

(
π2Î + 2π

√
Ĥ − l2π2

)
Âl (29)[

Âl, Â
†
l

]
= π2Î + 2π

√
Ĥ − l2π2. (30)

In position representation, we have the time evolution of a
coherent state

Zl(r, z, t) =
1√

I2(2|z|/π)

∞∑
m=1

(z
π

)m e−itπ
2(l2+m2)√

(m− 1)!(m + 1)!
ψl,m(r),

(31)
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Figura 1: Plot of the fidelity (a) between the initial coherent
state |z, 1⟩ and the evolving one |z, 1, t⟩ with l = 1 over a
quantum revival time Trev. The dots indicate the time for
each specific density plot (b-j) of the probability density of
the time-evolved one-dimensional coherent state in position
representation |Z(r, z, t)|2 (eq 31), where z = 5.
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