First-Principle Validation of Fourier's Law: One-Dimensional Classical Inertial Heisenberg Model

Henrique Santos Lima ^(a), Constantino Tsallis ^(a,b,c,d), and <u>Fernando D. Nobre</u> ^(a, b) ^(a) Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ^(b) National Institute of Science and Technology for Complex Systems, Rio de Janeiro, Brazil ^(c) Santa Fe Institute, Santa Fe, New Mexico, USA ^(d) Complexity Science Hub Vienna, Vienna, Austria

The thermal conductance of a one-dimensional classical inertial Heisenberg model of linear size L is computed, considering the first and last particles in thermal contact with heat baths at higher and lower temperatures, T_{h} and T_{l} , $T_{h}>T_{l}$, respectively. These particles at extremities of the chain are subjected to standard Langevin dynamics, whereas all remaining rotators (i=2, cdots, L-1\$) interact by means of nearest-neighbor ferromagnetic couplings and evolve in time following their own equations of motion, being investigated numerically through molecular-dynamics numerical simulations. Fourier's law for the heat flux is verified numerically with the thermal conductivity becoming independent of the lattice size in the limit $L \to infty$. Moreover, the thermal conductance, sigma(L,T) = uiv kappa(T)/L, is well-fitted by a function, typical of nonextensive statistical mechanics.