Scaling laws in the \$alpha-\$XY model

<u>A. Rodríguez</u>^(a), F. D. Nobre ^(b) and C. Tsallis ^(b) (a) Universidad Politécnica de Madrid, Spain (b) Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brasil

The α producing an interaction term decaying with the distance among rotators as $r^{-\alpha}$, with α being the range of interaction. In the long-range regime, α being the range of interaction. In the long-range regime, α being the dimension, the model presents a quasistationary state (QSS) at a temperature T_{α} before attaining the Boltzmann-Gibbs temperature.

We have studied $T_{QSS}\$ as well as the duration $t_{QSS}\$ of the QSS, as a function of parameters $(N, \alpha, U)\$, with $N\$ the number of rotators and $U\$ the total energy per particle, and found the scaling relations i) $t_{\det{QSS}}\$ propto $N^{A(\alpha, \beta, U)}\$, ii) $t_{QSS}\$, iii) $t_{QSS}\$ with a critical exponent $\Lambda^{A(\alpha, \beta, U)}\$, iii) $t_{QSS}\$, iii) $T_{\det{QSS}}\$, iii) $T_$