Signature of nonextensive statistical mechanics in asymptotically scale-free random networks

<u>U. TIRNAKLI</u>^(a), C. TSALLIS^(b)

^(a) Department of Physics, Faculty of Arts and Sciences, Izmir University of Economics, 35330, Izmir, Turkey. ^(b) Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil.

Wide classes of preferential-attachment-based random \$d\$-dimensional growing networks exhibit a \$q\$-exponential degree or energy ($\$ varepsilon_i\$) distribution. The corresponding asymptotic power-law behavior is determined by the ratio $\$ behavior. The corresponding characterizes the distance-dependence in a preferential-attachment rule $\$ propto varepsilon_i/d_{ij}^{(,lalpha_A}; (alpha_A \ge 0)\$. In order to cover more complex and realistic phenomena, we consider here a more general form, namely $\$ propto varepsilon_i/left[d_{ij}^{(,lalpha_A)} +c, d_{ij}^{(,lalpha_A^{prime})right], (alpha_A^{prime} > alpha_A;, c \ge 0)\$. An interesting crossover is then observed and studied in the power-law behavior of the energy distribution.